Skip to main content

Theoretical Methods in This Thesis

  • Chapter
  • First Online:
Structures and Dynamics of Interfacial Water

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, I will first introduce the basic concepts of sum frequency generation spectroscopy and the way how to calculate the sum frequency generation spectroscopy from the classical molecular dynamic simulation and ab initio molecular dynamics simulation. Later, I will briefly discuss the slab model I used in the calculation. Further details and calculation methods related to specific interface will be given later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan Y, Chen X, Yang L et al (2009) On the structure of water at the aqueous/air interface. J Phys Chem B 113:11672–11679

    Article  Google Scholar 

  2. Mukamel S (1999) Principles of nonlinear optical spectroscopy. Oxford University Press

    Google Scholar 

  3. Morita A, Hynes JT (2000) A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem Phys 258:371–390

    Article  Google Scholar 

  4. Morita A, Hynes JT (2002) A theoretical analysis of the sum frequency generation spectrum of the water surface. II. Time-dependent approach. J Phys Chem B 106:673–685

    Article  Google Scholar 

  5. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  6. Kumar R, Skinner JL (2008) Water simulation model with explicit three-molecule interactions. J Phys Chem B 112:8311–8318

    Article  Google Scholar 

  7. Tainter CJ, Pieniazek PA, Lin YS, Skinner JL (2011) Robust three-body water simulation model. J Chem Phys 134:184501

    Article  ADS  Google Scholar 

  8. Berens PH (1981) Molecular dynamics and spectra. I. Diatomic rotation and vibration. J Chem Phys 74:4872

    Article  ADS  Google Scholar 

  9. Ramírez R, López-Ciudad T, Kumar PP, Marx D (2004) Quantum corrections to classical time-correlation functions: hydrogen bonding and anharmonic floppy modes. J Chem Phys 121:3973–3983

    Article  ADS  Google Scholar 

  10. Schofield P (1960) Space-time correlation function formalism for slow neutron scattering. Phys Rev Lett 4:239–240

    Article  ADS  Google Scholar 

  11. Dalgarno A (1962) Atomic polarizabilities and shielding factors. Adv Phys 11:281–315

    Article  ADS  Google Scholar 

  12. Nagata Y, Mukamel S (2010) Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 132:6434–6442

    Article  Google Scholar 

  13. Nagata Y, Yoshimune S, Hsieh C et al (2015) Ultrafast vibrational dynamics of water disentangled by reverse nonequilibrium ab initio molecular dynamics simulations. Phys Rev X 021002:1–11

    Google Scholar 

  14. Schaefer J, Backus EHG, Nagata Y, Bonn M (2016) Both inter- and intramolecular coupling of O–H groups determine the vibrational response of the water/air interface. J Phys Chem Lett 7:4591–4595

    Article  Google Scholar 

  15. Nagata Y, Hsieh C-S, Hasegawa T et al (2013) Water bending mode at the water-vapor interface probed by sum-frequency generation spectroscopy: a combined molecular dynamics simulation and experimental study. J Phys Chem Lett 4:1872–1877

    Article  Google Scholar 

  16. Nagata Y, Hasegawa T, Backus EHG et al (2015) The surface roughness, but not the water molecular orientation varies with temperature at the water–air interface. Phys Chem Chem Phys 17:23559–23564

    Article  Google Scholar 

  17. Sulpizi M, Salanne M, Sprik MM, Gaigeot M-P (2013) Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations. J Phys Chem Lett 4:83–87

    Article  Google Scholar 

  18. Ohto T, Mishra A, Yoshimune S et al (2014) Influence of surface polarity on water dynamics at the water/rutile TiO2(110) interface. J Phys Condensed Matter 26:244102

    Google Scholar 

  19. Nakamura H, Ohto T, Nagata Y (2013) Polarizable site charge model at liquid/solid interfaces for describing surface polarity: application to structure and molecular dynamics of water/rutile TiO2(110) interface. J Chem Theory Comput 9:1193–1201

    Article  Google Scholar 

  20. Ohto T, Usui K, Hasegawa T et al (2015) Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity–velocity correlation function. J Chem Phys 143:124702

    Article  ADS  Google Scholar 

  21. Corcelli SA, Lawrence CP, Skinner JL (2004) Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O. J Chem Phys 120:8107–8117

    Article  ADS  Google Scholar 

  22. Auer BM, Skinner JL (2008) IR and Raman spectra of liquid water: theory and interpretation. J Chem Phys 128:224511

    Article  ADS  Google Scholar 

  23. Corcelli SA, Skinner JL (2005) Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 degrees celsius. J Phys Chem A 109:6154–6165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujie Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, F. (2019). Theoretical Methods in This Thesis. In: Structures and Dynamics of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8965-8_2

Download citation

Publish with us

Policies and ethics