Skip to main content

Synthesis and Regulation of Fungal Secondary Metabolites

  • Chapter
  • First Online:
Microbial Technology for the Welfare of Society

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 17))

Abstract

Fungi are well known for their ability to produce a multitude of secondary metabolites (SMs) which act as a weapon of defense to protect themselves against parasites and predators. A variety of fungal SMs have proved to serve as an important factor for decades. The synthesis of SMs in fungi is a complex, multi-step process and is stage-specific under specialized conditions. SMs are primarily synthesized by non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) enzymes. The genes encoded for SM synthesis are often located in the cluster form at the sub-telomere region. The SM biosynthetic gene cluster comprises of genes encoding for NRPS/PKS, a transcription factor, and other accessory genes essential for assembly and maturation of SM. The regulation of SM synthesis in fungi can be achieved by pathway-specific (in-clustered transcription factor), global regulatory proteins and chromatin remodeling. The regulatory protein-encoding gene present in each gene cluster is considered to be a crucial regulatory circuit of the SM biosynthetic pathway. Moreover, the regulation of fungal SM biosynthesis is also guided by global regulatory proteins responsive to pH, carbon, nitrogen, light/dark, and other environmental cues. Histone modifications by methylation and acetylation often altered the chromatin structure; as a result, these changes repress or express the genes of SM biosynthetic pathway. Taken together, we conclude that fungal SM ability as antibiotics to toxins is useful to mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agathos S, Madhosingh C, Marshall J, Lee J (1987) The fungal production of cyclosporine A. Ann N Y Acad Sci 506:657–662

    CAS  PubMed  Google Scholar 

  • Albright JC et al (2015) Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation. ACS Chem Biol 10:1535–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215

    CAS  Google Scholar 

  • Amici AM, Minghetti A, Scotti T, Spalla C, Tognoli L (1967) Ergotamine production in submerged culture and physiology of Claviceps purpurea. Appl Microbiol 15:597–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amoutzias G et al (2006) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24:827–835

    PubMed  Google Scholar 

  • Anaya AL, Cruz-Ortega R, Waller GR (2006) Metabolism and ecology of purine alkaloids. Front Biosci 11:2354

    CAS  PubMed  Google Scholar 

  • Aniszewski T (2015) Alkaloids: chemistry, biology, ecology, and applications. Elsevier, Amsterdam

    Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballario P, Talora C, Galli D, Linden H, Macino G (1998) Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol 29:719–729. https://doi.org/10.1046/j.1365-2958.1998.00955.x

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120

    CAS  PubMed  Google Scholar 

  • Bayram Ö et al (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    CAS  PubMed  Google Scholar 

  • Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:nchembio869

    Google Scholar 

  • Blumenstein A et al (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    CAS  PubMed  Google Scholar 

  • Bok JW et al (2006a) GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 74:6761–6768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006b) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37

    CAS  PubMed  Google Scholar 

  • Bok JW et al (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5:462–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    PubMed  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    CAS  PubMed  Google Scholar 

  • Brenna A, Grimaldi B, Filetici P, Ballario P (2012) Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Mol Biol Cell 23:3863–3872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brosch G, Loidl P, Graessle S (2008) Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 32:409–439

    CAS  PubMed  Google Scholar 

  • Bu’Lock J (1961) Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol 3:293–342

    PubMed  Google Scholar 

  • Bu’Lock J, Detroy R, Hošťálek Z, Munim-Al-Shakarchi A (1974) Regulation of secondary biosynthesis in Gibberella fujikuroi. Trans Br Mycol Soc 62:377–389

    Google Scholar 

  • Byrne KM, Smith SK, Ondeyka JG (2002) Biosynthesis of nodulisporic acid A: precursor studies. J Am Chem Soc 124:7055–7060

    CAS  PubMed  Google Scholar 

  • Cacho RA, Jiang W, Chooi Y-H, Walsh CT, Tang Y (2012) Identification and characterization of the echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440. J Am Chem Soc 134:16781–16790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caddick MX, Brownlee AG, Arst HN (1986) Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol Gen Genet MGG 203:346–353

    CAS  PubMed  Google Scholar 

  • Caddick MX et al (2006) Opposing signals differentially regulate transcript stability in Aspergillus nidulans. Mol Microbiol 62:509–519

    CAS  PubMed  Google Scholar 

  • Cairns T, Meyer V (2017) In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. BMC Genomics 18:631. https://doi.org/10.1186/s12864-017-3969-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calne R et al (1989) Rapamycin for immunosuppression in organ allografting. Lancet 334:227

    Google Scholar 

  • Calvo AM, Gardner HW, Keller NP (2001) Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem 276:25766–25774

    CAS  PubMed  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cánovas D et al (2014) The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 197:1175–1189

    PubMed  PubMed Central  Google Scholar 

  • Castaño I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55:1246–1258

    PubMed  Google Scholar 

  • Champe SP, El-Zayat A (1989) Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol 171:3982–3988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P-K, Ehrlich KC (2013) Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus. Appl Microbiol Biotechnol 97:4289–4300

    CAS  PubMed  Google Scholar 

  • Chang P-K, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE (1995) Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol 61:2372–2377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang Y-M, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CCC (2009) A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, Asperfuranone, in Aspergillus nidulans. J Am Chem Soc 131:2965–2970. https://doi.org/10.1021/ja8088185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung H, Choi J, Park S-Y, Jeon J, Lee Y-H (2013) Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus. Fungal Genet Biol 61:133–141

    CAS  PubMed  Google Scholar 

  • Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6:725–736

    CAS  PubMed  Google Scholar 

  • Crosson S, Moffat K (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14:1067–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crosson S, Rajagopal S, Moffat K (2003) The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochem(Mosc) 42:2–10

    CAS  PubMed  Google Scholar 

  • Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Sci 276:763–769

    CAS  PubMed  Google Scholar 

  • Darkin-Rattray SJ et al (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci 93:13143–13147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degenkolb T et al (2000) Roseoferin, a new aminolipopeptide antibiotic complex from Mycogone rosea DSM 12973, structures and biological activities. J Antibiot 53:184–190

    CAS  Google Scholar 

  • Demain A (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    CAS  PubMed  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: History of modern biotechnology I. Springer, New York, pp 1–39

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, Chichester

    Google Scholar 

  • Díez E et al (2002) Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21:1350–1359

    PubMed  PubMed Central  Google Scholar 

  • Dorner JW, Cole RJ, Diener UL (1984) The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of aflatoxins and cyclopiazonic acid. Mycopathologia 87:13–15

    CAS  PubMed  Google Scholar 

  • Dowzer CE, Kelly JM (1989) Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459

    CAS  PubMed  Google Scholar 

  • Dowzer C, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubouzet JG, Matsuda F, Ishihara A, Miyagawa H, Wakasa K (2013) Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice. Plant Biotechnol J 11:1103–1111

    CAS  PubMed  Google Scholar 

  • Echavarri-Erasun C, Johnson EA (2002) Fungal carotenoids. In: Applied mycology and biotechnology. Elsevier, Amsterdam, pp 45–85

    Google Scholar 

  • Ehrlich K, Cotty P (2002) Variability in nitrogen regulation of aflatoxin production by Aspergillus flavus strains. Appl Microbiol Biotechnol 60:174–178

    CAS  PubMed  Google Scholar 

  • Ehrlich K, Montalbano B, Cary J (1999) Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene 230:249–257

    CAS  PubMed  Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryot Cell 3:561–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    CAS  PubMed  Google Scholar 

  • Espeso EA, Tilburn J, Arst H Jr, Penalva M (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esser K, Tudzynski P (1978) Genetics of the ergot fungus Claviceps purpurea. Theor Appl Genet 53:145–149

    CAS  PubMed  Google Scholar 

  • Evans WC (2009) Trease and Evans’ pharmacognosy e-book. Elsevier Health Sciences, New York

    Google Scholar 

  • Evans BS, Robinson SJ, Kelleher NL (2011) Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet Biol 48:49–61

    CAS  PubMed  Google Scholar 

  • Feng GH, Leonard TJ (1998) Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl Environ Microbiol 64:2275–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisch K et al (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213

    CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    CAS  PubMed  Google Scholar 

  • Flaherty JE, Pirttilä AM, Bluhm BH, Woloshuk CP (2003) PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl Environ Microbiol 69:5222–5227. https://doi.org/10.1128/aem.69.9.5222-5227.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flipphi M, Kocialkowska J, Felenbok B (2003) Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulans. Eur J Biochem 270:3555–3564

    CAS  PubMed  Google Scholar 

  • Fox EM, Howlett BJ (2008) Biosynthetic gene clusters for epipolythiodioxopiperazines in filamentous fungi. Mycol Res 112:162–169

    CAS  PubMed  Google Scholar 

  • Fox EM, Gardiner DM, Keller NP, Howlett BJ (2008) A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans. Fungal Genet Biol 45:671–682. https://doi.org/10.1016/j.fgb.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  • Fraser JA, Davis MA, Hynes MJ (2001) The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics 157:119–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    CAS  PubMed  Google Scholar 

  • Gacek A, Strauss J (2012) The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol 95:1389–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Henn MR, Ma L-J, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631. https://doi.org/10.1101/gr.3767105

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Ferrara M, Perrone G (2013) Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins 5:717–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Chooi Y-H, Ames BD, Wang P, Walsh CT, Tang Y (2011) Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 133:2729–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Estrada C et al (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512. https://doi.org/10.1016/j.chembiol.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  • Gardiner DM, Osborne S, Kazan K, Manners JM (2009) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155:3149–3156. https://doi.org/10.1099/mic.0.029546-0

    Article  CAS  PubMed  Google Scholar 

  • Giese H, Sondergaard TE, Sørensen JL (2013) The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol 117:814–821

    CAS  PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    CAS  PubMed  Google Scholar 

  • Grimaldi B et al (2006) The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17:4576–4583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grisham LM, Wilson L, BENSCH KG (1973) Antimitotic action of griseofulvin does not involve disruption of microtubules. Nature 244:294–296

    CAS  PubMed  Google Scholar 

  • Guirimand G, Courdavault V, St-Pierre B, Burlat V (2010) Biosynthesis and regulation of alkaloids. In: Plant developmental biology-biotechnological perspectives. Springer, Berlin, pp 139–160

    Google Scholar 

  • Gutiérrez S et al (1999) Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology 145:317–324

    PubMed  Google Scholar 

  • Haas H, Angermayr K, Zadra I, Stöffler G (1997) Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem 272:22576–22582

    CAS  PubMed  Google Scholar 

  • Harper JK et al (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476

    CAS  Google Scholar 

  • Hashimoto M, Nonaka T, Fujii I (2014) Fungal type III polyketide synthases. Nat Prod Rep 31:1306–1317

    CAS  PubMed  Google Scholar 

  • Hayakawa S, Matsushima T, Kimura T, Minato H, Katagiri K (1968) Zygosporin A, a new antibiotic from Zygosporium masonii. J Antibiot 21:523–524

    CAS  Google Scholar 

  • He Q, Liu Y (2005) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmig V, Grothe T, Mayer-Bartschmid A (2002) Altersetin, a new antibiotic from culture of endophytic Alternarla sp. taxonomy, fermentation, isolation, structure elucidation and biological activities. J Antibiot (Tokyo) 55:881–892

    Google Scholar 

  • Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438

    CAS  PubMed  Google Scholar 

  • Hodgkin J (2001) Genome size. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, p 865

    Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416. https://doi.org/10.1039/b603084j

    Article  CAS  PubMed  Google Scholar 

  • Hong S-Y, Roze LV, Linz JE (2013) Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins 5:683–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N et al (2000) New strobilurins O and P from a mushroom. J Antibiot 53:297–300

    CAS  Google Scholar 

  • Hu C, Zou Y, Zhao W (2009) Effect of soybean oil on the production of mycelial biomass and pleuromutilin in the shake-flask culture of Pleurotus mutilus. World J Microbiol Biotechnol 25:1705–1711

    CAS  Google Scholar 

  • Hu Y, Zhang W, Zhang P, Ruan W, Zhu X (2013) Nematicidal activity of Chaetoglobosin A poduced by Chaetomium globosum NK102 against Meloidogyne incognita. J Agric Food Chem 61:41–46. https://doi.org/10.1021/jf304314g

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson CR (2003) Polyketide and non-ribosomal peptide synthases: falling together by coming apart. Proc Natl Acad Sci 100:3010–3012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi Y et al (2000) Xanthoepocin, a new antibiotic from Penicillium simplicissimum IFO5762. J Antibiot 53:928–933

    CAS  Google Scholar 

  • Jekosch K, Kück U (2000) Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37:388–395

    CAS  PubMed  Google Scholar 

  • Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    CAS  PubMed  Google Scholar 

  • Jin JM et al (2010) Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum. Mol Microbiol 76:456–466

    CAS  PubMed  Google Scholar 

  • Kamei K, Watanabe A (2005) Aspergillus mycotoxins and their effect on the host. Med Mycol 43:95–99

    Google Scholar 

  • Kato N, Brooks W, Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2:1178–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller NP (2015) Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol 11:671–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 87:643–648. https://doi.org/10.1094/phyto.1997.87.6.643

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    CAS  PubMed  Google Scholar 

  • Kelly WL, Hillson NJ, Walsh CT (2005) Excision of the epothilone synthetase B cyclization domain and demonstration of in trans condensation/cyclodehydration activity. Biochem (Mosc) 44:13385–13393

    CAS  PubMed  Google Scholar 

  • Khaldi N, Wolfe KH (2011) Evolutionary origins of the fumonisin secondary metabolite gene cluster in Fusarium verticillioides and Aspergillus niger. Int J Evol Biol 2011 pp 1-7. doi:10.4061/2011/423821

    Google Scholar 

  • Kihara J, Moriwaki A, Tanaka N, Tanaka C, Ueno M, Arase S (2008) Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 281:221–227

    CAS  PubMed  Google Scholar 

  • Kim H, Woloshuk C (2008) Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 45:947–953

    CAS  PubMed  Google Scholar 

  • Kleinwaechter P, Schlegel B, Doerfelt H, Graefe U (2001) Spirobenzofuran, a new bioactive metabolite from Acremonium sp. HKI 0230. J Antibiot 54:526–527

    Google Scholar 

  • Knox BP, Keller NP (2015) Key players in the regulation of fungal secondary metabolism. In: Zeilinger S, Martín J-F, García-Estrada C (eds) Biosynthesis and molecular genetics of fungal secondary metabolites, vol 2. Springer, New York, pp 13–28

    Google Scholar 

  • Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U (2013) Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell 12:299–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    CAS  PubMed  Google Scholar 

  • Kudla B et al (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Jaiswal V, Kumar V, Dey A, Kumar A (2018) Functional redundancy in Echinocandin B in-cluster transcription factor ecdB of Emericella rugulosa NRRL 11440. Biotechnol Rep 19:e00264. https://doi.org/10.1016/j.btre.2018.e00264

    Article  Google Scholar 

  • Lai L-ST, Hung C-S, Lo C-C (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104:9–13. https://doi.org/10.1263/jbb.104.9

    Article  CAS  PubMed  Google Scholar 

  • Lan H et al (2016) The Aspergillus flavus histone acetyltransferase AflGcnE regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity. Front Microbiol 7:1324

    PubMed  PubMed Central  Google Scholar 

  • Lim FY, Sanchez JF, Wang CC, Keller NP (2012) Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol 517:303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H-C et al (2015) Elucidation of the concise biosynthetic pathway of the communesin indole alkaloids. Angew Chem Int Ed 54:3004–3007. https://doi.org/10.1002/anie.201411297

    Article  CAS  Google Scholar 

  • Linne U, Doekel S, Marahiel MA (2001) Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. Biochemistry (Mosc) 40:15824–15834. https://doi.org/10.1021/bi011595t

    Article  CAS  Google Scholar 

  • Liu L, Zhang Z, Shao C-L, Wang J-L, Bai H, Wang C-Y (2015) Bioinformatical analysis of the sequences, structures and functions of fungal polyketide synthase product template domains. Sci Rep 5:10463. https://doi.org/10.1038/srep10463

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Berges MS et al (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65

    PubMed  Google Scholar 

  • Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127–135. https://doi.org/10.1016/S0959-437X(03)00026-1

    Article  CAS  PubMed  Google Scholar 

  • Macheleidt J et al (2016) Regulation and role of fungal secondary metabolites. Annu Rev Genet 50:371–392

    CAS  PubMed  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    CAS  PubMed  Google Scholar 

  • Mahmood ZA, Ahmed SW, Azhar I, Sualeh M, Baig MT, Zoha S (2010) Bioactive alkaloids produced by fungi I. Updates on alkaloids from the species of the genera boletus, Fusarium and psilocybe. Pak J Pharm Sci 23:349–357

    CAS  PubMed  Google Scholar 

  • Mann V et al (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36:876–881

    CAS  PubMed  Google Scholar 

  • Marshall CG, Burkart MD, Keating TA, Walsh CT (2001) Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate. Biochemistry (Mosc) 40:10655–10663

    CAS  Google Scholar 

  • Martinez-Zamudio R, Ha HC (2012) Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol. https://doi.org/10.1128/MCB.06667-11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihlan M, Homann V, Liu TWD, Tudzynski B (2003) AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 47:975–991

    CAS  PubMed  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    CAS  PubMed  Google Scholar 

  • Moss MO (2002) Mycotoxin review-1. Aspergillus and penicillium. Mycologist 16:116–119

    Google Scholar 

  • Netzker T et al (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    PubMed  PubMed Central  Google Scholar 

  • Ni M, Yu J-H (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2:e970

    PubMed  PubMed Central  Google Scholar 

  • Noh MJ et al (1999) Isolation of a novel microorganism, Pestalotia heterocornis, producing paclitaxel. Biotechnol Bioeng 64:620–623

    CAS  PubMed  Google Scholar 

  • Nützmann H-W et al (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci 108:14282–14287

    PubMed  PubMed Central  Google Scholar 

  • Nützmann H-W, Fischer J, Scherlach K, Hertweck C, Brakhage AA (2013) Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans. Appl Environ Microbiol 79:6102–6109

    PubMed  PubMed Central  Google Scholar 

  • O’Callaghan J, Stapleton PC, Dobson ADW (2006) Ochratoxin A biosynthetic genes in Aspergillus ochraceus are differentially regulated by pH and nutritional stimuli. Fungal Genet Biol 43:213–221. https://doi.org/10.1016/j.fgb.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  • Omura S et al (1995) Arisugacin, a novel and selective inhibitor of acetylcholinesterase from Penicillium sp. FO-4259. J Antibiot 48:745–746

    CAS  Google Scholar 

  • Ondeyka JG et al (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. isolation, structure determination, and chemical transformations. J Am Chem Soc 119:8809–8816

    CAS  Google Scholar 

  • Pahl HL et al (1996) The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J Exp Med 183:1829–1840

    CAS  PubMed  Google Scholar 

  • Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JM et al (2010) Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans. Microbiology 156:3522–3531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park H-S, Nam T-Y, Han K-H, Kim SC, Yu J-H (2014) VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9:e89883

    PubMed  PubMed Central  Google Scholar 

  • Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG (2013) A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem 288:14032–14045. https://doi.org/10.1074/jbc.M113.465765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedley KF, Walton JD (2001) Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc Natl Acad Sci 98:14174–14179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin RM et al (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50

    PubMed  PubMed Central  Google Scholar 

  • Picot A, Barreau C, Pinson-Gadais L, Caron D, Lannou C, Richard-Forget F (2010) Factors of the Fusarium verticillioides-maize environment modulating fumonisin production. Crit Rev Microbiol 36:221–231

    PubMed  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP, Desjardins AE (1995) Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 61:1923–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purschwitz J et al (2008) Functional and physical interaction of blue-and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    CAS  PubMed  Google Scholar 

  • Purschwitz J, Müller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol Gen Genomics 281:35–42

    CAS  Google Scholar 

  • Ramawat KG, Mérillon J-M (2013) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin/Heidelberg

    Google Scholar 

  • Raper KB (1946) The development of improved penicillin-producing molds. Ann N Y Acad Sci 48:41–56

    Google Scholar 

  • Ravagnani A et al (1997) Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J 16:3974–3986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Dominguez Y et al (2008) Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot Cell 7:656–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Dominguez Y et al (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 76:1376–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts MF (2013) Alkaloids: biochemistry, ecology, and medicinal applications. Springer, New York

    Google Scholar 

  • Rosas-Hernández LL et al (2008) yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata. Eukaryot Cell 7:2168–2178

    PubMed  PubMed Central  Google Scholar 

  • Rossetto D, Avvakumov N, Côté J (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7:1098–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruijter GJ, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114

    CAS  PubMed  Google Scholar 

  • Sándor E et al (1998) Allosamidin inhibits the fragmentation of Acremonium chrysogenum but does not influence the cephalosporin-C production of the fungus. FEMS Microbiol Lett 164:231–236

    PubMed  Google Scholar 

  • Schmitt EK, Kück U (2000) The fungal CPCR1 protein, which binds specifically to β-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J Biol Chem 275:9348–9357

    CAS  PubMed  Google Scholar 

  • Schönig B, Brown DW, Oeser B, Tudzynski B (2008) Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. Eukaryot Cell 7:1831–1846

    PubMed  PubMed Central  Google Scholar 

  • Schrettl M et al (2010) HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog 6:e1001124

    PubMed  PubMed Central  Google Scholar 

  • Schwerdtfeger C, Linden H (2000) Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur J Biochem 267:414–422

    CAS  PubMed  Google Scholar 

  • Schwerdtfeger C, Linden H (2001) Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol Microbiol 39:1080–1087

    CAS  PubMed  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott P, Wv W, Harwig J, Fennell D (1970) Occurrence of a mycotoxin, ochratoxin A, in wheat and isolation of ochratoxin A and citrinin producing strains of Penicillium viridicatum. Can J Plant Sci 50:583–585

    CAS  Google Scholar 

  • Scott B et al (2013) Deletion and gene expression analyses define the paxilline biosynthetic gene cluster in Penicillium paxilli. Toxins 5:1422–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi J, Gaucher GM (1977) Conidiogenesis and secondary metabolism in Penicillium urticae. Appl Environ Microbiol 33:147–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    CAS  PubMed  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 73:5097–5103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KM et al (2008) The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics Chromatin 1:1–20. https://doi.org/10.1186/1756-8935-1-5

    Article  CAS  Google Scholar 

  • Soukup AA et al (2012) Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 86:314–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    CAS  PubMed  Google Scholar 

  • Stein T, Vater J, Kruft V, Otto A, Wittmann-Liebold B, Franke P, Panico M, McDowell R, Morris HR (1996) The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 271:15428–15435

    CAS  PubMed  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    CAS  PubMed  Google Scholar 

  • Stinnett SM, Espeso EA, Cobeño L, Araújo-Bazán L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin α carrier and on light. Mol Microbiol 63:242–255

    CAS  PubMed  Google Scholar 

  • Strauss J, Reyes-Dominguez Y (2011) Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 48:62–69. https://doi.org/10.1016/j.fgb.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  • Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20:234–240. https://doi.org/10.1016/j.sbi.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926. https://doi.org/10.1099/13500872-145-8-1919

    Article  CAS  PubMed  Google Scholar 

  • Talora C, Franchi L, Linden H, Ballario P, Macino G (1999) Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J 18:4961–4968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramón D, Orejas M (2008) CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol 45:984–993

    CAS  PubMed  Google Scholar 

  • Thomas JO, Kornberg RD (1975) An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci 72:2626–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapp S, Hohn T, McCormick S, Jarvis B (1998) Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum. Mol Gen Genet MGG 257:421–432

    CAS  PubMed  Google Scholar 

  • Trushina N, Levin M, Mukherjee PK, Horwitz BA (2013) PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 14:138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji G et al (2000) Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn (II) 2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 38:940–954

    CAS  PubMed  Google Scholar 

  • Tudzynski B (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl Microbiol Biotechnol 52:298–310

    CAS  PubMed  Google Scholar 

  • Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656

    PubMed  PubMed Central  Google Scholar 

  • Tudzynski B, Liu S, Kelly JM (2000) Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes. FEMS Microbiol Lett 184:9–15

    CAS  PubMed  Google Scholar 

  • Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot 19:200

    CAS  Google Scholar 

  • Van Den Berg MA, Hans M (2011) Improved statin production. In DSM IP Assets BV, United States

    Google Scholar 

  • Verdone L, Agricola E, Caserta M, Di Mauro E (2006) Histone acetylation in gene regulation. Brief Funct Genomics 5:209–221

    CAS  Google Scholar 

  • Vertesy L, Kurz M, Schiell M, Hofmann J (2003) Cephaibols: novel antiparasitics from Acremonium tubakii process for their production, and use thereof. In Google Patents

    Google Scholar 

  • Wakimoto T, Mori T, Morita H, Abe I (2011) Cytotoxic tetramic acid derivative produced by a plant type-III polyketide synthase. J Am Chem Soc 133:4746–4749

    CAS  PubMed  Google Scholar 

  • Waller GR, Burström H (1969) Diterpenoid alkaloids as plant growth inhibitors. Nature 222:576. https://doi.org/10.1038/222576a0

    Article  CAS  Google Scholar 

  • Walsh CT et al (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534

    CAS  PubMed  Google Scholar 

  • Wansi JD, Devkota KP, Tshikalange E, Kuete V (2013) 14 – Alkaloids from the medicinal plants of Africa. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, Oxford, pp 557–605

    Google Scholar 

  • Wee J (2015) Regulation and subcellular localization of aflatoxin biosynthesis in Aspergillus parasiticus. Michigan State University, Michigan

    Google Scholar 

  • Wei S, Zhao F, Jiang Z, Zhou D (2013) Microbial conversion of waste cooking oil into riboflavin by Ashbya gossypii [Conversão microbiana de óleo de cozinha recolhido em riboflavina por Ashbya gossypii]. Biosci J 29:1000–1006

    Google Scholar 

  • Weissman KJ (2009) Introduction to polyketide biosynthesis. Methods Enzymol 459:3–16

    CAS  PubMed  Google Scholar 

  • William CN et al (2005) Secondary metabolite biosynthetic gene clusters in filamentous fungi. In: Fungal genetics conference 23rd. Fungal Genetics Newsletter, California, p 190

    Google Scholar 

  • Wilson NR, Hochstrasser M (2016) The regulation of chromatin by dynamic SUMO modifications. In: SUMO. Springer, New York, pp 23–38

    Google Scholar 

  • Wiseman DW, Buchanan RL (1987) Determination of glucose level needed to induce aflatoxin production in Aspergillus parasiticus. Can J Microbiol 33:828–830

    CAS  PubMed  Google Scholar 

  • Wolf J, Mirocha C (1973) Regulation of sexual reproduction in Gibberella zeae (Fusarium roseum ‘Graminearum’) by F-2 (zearalenone). Can J Microbiol 19:725–734

    CAS  PubMed  Google Scholar 

  • Wong KH, Hynes MJ, Todd RB, Davis MA (2007) Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol Microbiol 66:534–551

    CAS  PubMed  Google Scholar 

  • Wong KH, Hynes MJ, Todd RB, Davis MA (2009) Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. Microbiology 155:3868–3880

    CAS  PubMed  Google Scholar 

  • Xu W, Gavia DJ, Tang Y (2014) Biosynthesis of fungal indole alkaloids. Nat Prod Rep 31:1474–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 49:329–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    CAS  PubMed  Google Scholar 

  • Zutz C, Gacek A, Sulyok M, Wagner M, Strauss J, Rychli K (2013) Small chemical chromatin effectors alter secondary metabolite production in Aspergillus clavatus. Toxins 5:1723–1741

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Kumar, A. (2019). Synthesis and Regulation of Fungal Secondary Metabolites. In: Arora, P. (eds) Microbial Technology for the Welfare of Society. Microorganisms for Sustainability, vol 17. Springer, Singapore. https://doi.org/10.1007/978-981-13-8844-6_2

Download citation

Publish with us

Policies and ethics