Skip to main content

Exploring Endoperoxides as Leishmanicidal Compounds

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

With advances in genomics, proteomics, and bioinformatics, identification of unique parasite-specific metabolic pathways has facilitated development of antileishmanial chemotherapeutics. In view of Leishmania parasites having a compromised antioxidant defense mechanism, induction of oxidative stress is a universal strategy adopted by conventional antileishmanial drugs with mitochondrial dysfunction being the major source of free radicals. However, a limitation is that mammalian mitochondria too are inhibited. Therefore, an attractive therapeutic option would be compounds like endoperoxides which owing to their unusual peroxide bridge mediate parasiticidal activity primarily via generation of free radicals. Accordingly, exploring the leishmanicidal potential of endoperoxides like artemisinin and ascaridole having established antimalarial and antihelminthic properties respectively, was the focus of this study. Leishmania proved to be a susceptible target for these free radical generating endoperoxides, making this therapeutic modality worthy of future pharmacological consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin G, Wong ST (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19:637–644

    Article  PubMed  Google Scholar 

  2. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res 6:750

    Article  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization. http://www.who.int/mediacentre/factsheets/fs375/en/. Accessed 19 Sept 2018

  4. Croft SL, Seifert K, Duchêne M (2003) Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol 126:165–172

    Article  CAS  PubMed  Google Scholar 

  5. Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597

    Article  CAS  PubMed  Google Scholar 

  6. Andrade-Neto VV, Cunha-Junior EF, Dos Santos FV, Pereira TM, Silva RL, Leon LL, Torres-Santos EC (2018) Leishmaniasis treatment: update of possibilities for drug repurposing. Front Biosci (Landmark Ed) 23:967–996

    Article  CAS  Google Scholar 

  7. Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, Chatterjee M (2007) Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol 56:1213–1218

    Article  CAS  PubMed  Google Scholar 

  8. Sen R, Ganguly S, Saha P, Chatterjee M (2010a) Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents 36:43–49

    Article  CAS  PubMed  Google Scholar 

  9. Sen R, Saha P, Sarkar A, Ganguly S, Chatterjee M (2010b) Iron enhances generation of free radicals by artemisinin causing a caspase-independent, apoptotic death in Leishmania donovani promastigotes. Free Radic Res 44:1289–1295

    Article  CAS  PubMed  Google Scholar 

  10. Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X (2012) Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy. PLoS Genet 8:e1003083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Assche T, Deschacht M, da Luz RA, Maes L, Cos P (2011) Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 51:337–351

    Article  CAS  PubMed  Google Scholar 

  12. Mukbel RM, Patten C Jr, Gibson K, Ghosh M, Petersen C, Jones DE (2007) Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am J Trop Med Hyg 76:669–675

    Article  CAS  PubMed  Google Scholar 

  13. Courret N, Fréhel C, Gouhier N, Pouchelet M, Prina E, Roux P, Antoine JC (2002) Biogenesis of Leishmania harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigotes stage of the parasites. J Cell Sci 115:2303–2316

    CAS  PubMed  Google Scholar 

  14. Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780:1236–1248

    Article  CAS  PubMed  Google Scholar 

  15. Dolai S, Yadav RK, Pal S, Adak S (2009) Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage. Eukaryot Cell 8:1721–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227:1485–1487

    Article  CAS  PubMed  Google Scholar 

  17. Saudagar P, Dubey VK (2011) Cloning, expression, characterization and inhibition studies on trypanothione synthetase, a drug target enzyme, from Leishmania donovani. Biol Chem 392:1113–1122

    Article  PubMed  Google Scholar 

  18. Flohé L, Hecht HJ, Steinert P (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 27:966–984

    Article  PubMed  Google Scholar 

  19. Comini MA, Flohé L (2013) Trypanothione-based redox metabolism of trypanosomatids. In: Trypanosomatid diseases: molecular routes to drug discovery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 167–199

    Chapter  Google Scholar 

  20. Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, De Rycker M, Torrie LS, Wyatt PG, Wyllie S, Gilbert IH (2017) Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 15:217–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leroux AE, Krauth-Siegel RL (2016) Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol Biochem Parasitol 206:67–74

    Article  CAS  PubMed  Google Scholar 

  22. Mookerjee Basu J, Mookerjee A, Sen P, Bhaumik S, Sen P, Banerjee S, Naskar K, Choudhuri SK, Saha B, Raha S, Roy S (2006) Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agents Chemother 50:1788–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sundar S, Chatterjee M (2006) Visceral leishmaniasis—current therapeutic modalities. Indian J Med Res 123:345–352

    CAS  PubMed  Google Scholar 

  24. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 9:53–64

    Article  CAS  PubMed  Google Scholar 

  25. Mehta A, Shaha C (2004) Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 279:11798–11813

    Article  CAS  PubMed  Google Scholar 

  26. Shaha C (2006) Apoptosis in Leishmania species & its relevance to disease pathogenesis. Indian J Med Res 123:233–244

    CAS  PubMed  Google Scholar 

  27. Verma NK, Singh G, Dey CS (2007) Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction. Exp Parasitol 116:1–13

    Article  CAS  PubMed  Google Scholar 

  28. Getachew F, Gedamu L (2012) Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death. Mol Biochem Parasitol 183:42–51

    Article  CAS  PubMed  Google Scholar 

  29. Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N (2017) Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One 12:e0171306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh K, Ali V, Pratap Singh K, Gupta P, Suman SS, Ghosh AK, Bimal S, Pandey K, Das P (2017) Deciphering the interplay between cysteine synthase and thiol cascade proteins in modulating amphotericin B resistance and survival of Leishmania donovani under oxidative stress. Redox Biol 12:350–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dembitsky VM (2008) Bioactive peroxides as potential therapeutic agents. Eur J Med Chem 43:223–251

    Article  CAS  PubMed  Google Scholar 

  32. Dörsam B, Fahrer J (2016) The disulfide compound α-lipoic acid and its derivatives: a novel class of anticancer agents targeting mitochondria. Cancer Lett 371:12–19

    Article  CAS  PubMed  Google Scholar 

  33. Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini-Rev Med Chem 7:571–589

    Article  CAS  PubMed  Google Scholar 

  34. Usman LA, Hamid AA, Muhammad NO, Olawore NO, Edewor TI, Saliu BK (2010) Chemical constituents and anti-inflammatory activity of leaf essential oil of Nigerian grown Chenopodium album L. EXCLI J 9:181–186

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jardim CM, Jham GN, Dhingra OD, Freire MM (2008) Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L. J Chem Ecol 34:1213–1218

    Article  CAS  PubMed  Google Scholar 

  36. Pollack Y, Segal R, Golenser J (1990) The effect of ascaridole on the in vitro development of Plasmodium falciparum. Parasitol Res 76:570–572

    Article  CAS  PubMed  Google Scholar 

  37. Efferth T, Olbrich A, Sauerbrey A, Ross DD, Gebhart E, Neugebauer M (2002) Activity of ascaridole from the anthelmintic herb Chenopodium anthelminticum L. against sensitive and multidrug-resistant tumor cells. Anticancer Res 22:4221–4224

    CAS  PubMed  Google Scholar 

  38. Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J, Aoki T (2002) Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J Nat Prod 65:509–512

    Article  CAS  PubMed  Google Scholar 

  39. Monzote L, Montalvo AM, Almanonni S, Scull R, Miranda M, Abreu J (2006) Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy 52:130–136

    Article  CAS  PubMed  Google Scholar 

  40. Meshnick SR (2002) Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol 32:1655–1660

    Article  CAS  PubMed  Google Scholar 

  41. Meshnick SR, Thomas A, Ranz A, Xu CM, Pan HZ (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181–189

    Article  CAS  PubMed  Google Scholar 

  42. Posner GH, Wang D, Cumming JN, Oh CH, French AN, Bodley AL, Shapiro TA (1995) Further evidence supporting the importance of and the restrictions on a carbon-centered radical for high antimalarial activity of 1,2,4-trioxanes like artemisinin. J Med Chem 38:2273–2275

    Article  CAS  PubMed  Google Scholar 

  43. Olliaro P (2001) Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Ther 89:207–219

    Article  CAS  PubMed  Google Scholar 

  44. Meshnick SR (1994) Free radicals and antioxidants. Lancet 344:1441–1442

    CAS  PubMed  Google Scholar 

  45. O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15:1705–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong Y, Vennerstrom JL (2003) Mechanisms of in situ activation for peroxidic antimalarials. Redox Rep 8:284–288

    Article  CAS  PubMed  Google Scholar 

  47. Biagini GA, O’Neill PM, Nzila A, Ward SA, Bray PG (2003) Antimalarial chemotherapy: young guns or back to the future? Trends Parasitol 19:479–487

    Article  CAS  PubMed  Google Scholar 

  48. O’Neill PM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964

    Article  CAS  PubMed  Google Scholar 

  49. Cavalli JF, Tomi F, Bernardini AF, Casanova J (2004) Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR spectroscopy: quantitative determination of ascaridole, a heat-sensitive compound. Phytochem Anal 15:275–279

    Article  CAS  PubMed  Google Scholar 

  50. Chittiboyina AG, Avonto C, Khan IA (2016) What happens after activation of ascaridole? Reactive compounds and their implications for skin sensitization. Chem Res Toxicol 29:1488–1492

    Article  CAS  PubMed  Google Scholar 

  51. Geroldinger G, Tonner M, Hettegger H, Bacher M, Monzote L, Walter M, Staniek K, Rosenau T, Gille L (2017) Mechanism of ascaridole activation in Leishmania. Biochem Pharmacol 132:48–62

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz J, Mallet-Ladeira S, Maynadier M, Vial H, André-Barrès C (2014) Design, synthesis and evaluation of new tricyclic endoperoxides as potential antiplasmodial agents. Org Biomol Chem 12:5212–5221

    Article  CAS  PubMed  Google Scholar 

  53. Rudrapal M, Chetia D (2016) Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. Drug Des Devel Ther 10:3575–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Monzote L, Geroldinger G, Tonner M, Scull R, De Sarkar S, Bergmann S, Bacher M, Staniek K, Chatterjee M, Rosenau T, Gille L (2018) Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in Leishmania and other eukaryotes. Phytother Res 32:1729–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, Searle S, Miller EN, Peacock CS, Mohammed H, Ibrahim M (2001) SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol 3:773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 210:401–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Monzote L, García M, Pastor J, Gil L, Scull R, Maes L, Cos P, Gille L (2014) Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp Parasitol 136:20–26

    Article  CAS  PubMed  Google Scholar 

  58. Avery MA, Muraleedharan KM, Desai PV, Bandyopadhyaya AK, Furtado MM, Tekwani BL (2003) Structure-activity relationships of the antimalarial agent artemisinin. 8. Design, synthesis, and CoMFA studies toward the development of artemisinin-based drugs against leishmaniasis and malaria. J Med Chem 46:4244–4258

    Article  CAS  PubMed  Google Scholar 

  59. Menon RB, Kannoth MM, Tekwani BL, Gut J, Rosenthal PJ, Avery MA (2006) A new library of C-16 modified artemisinin analogs and evaluation of their anti-parasitic activities. Comb Chem High Throughput Screen 9:729–741

    Article  CAS  PubMed  Google Scholar 

  60. Chollet C, Crousse B, Bories C, Bonnet-Delpon D, Loiseau PM (2008) In vitro antileishmanial activity of fluoro-artemisinin derivatives against Leishmania donovani. Biomed Pharmacother 62:462–465

    Article  CAS  PubMed  Google Scholar 

  61. Raffetin A, Bruneel F, Roussel C, Thellier M, Buffet P, Caumes E, Jauréguiberry S (2018) Use of artesunate in non-malarial indications. Med Mal Infect 48:238–249

    Article  CAS  PubMed  Google Scholar 

  62. Slade D, Galal AM, Gul W, Radwan MM, Ahmed SA, Khan SI, Tekwani BL, Jacob MR, Ross SA, Elsohly MA (2009) Antiprotozoal, anticancer and antimicrobial activities of dihydroartemisinin acetal dimers and monomers. Bioorg Med Chem 17:7949–7957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P (2012) Mitochondria-ROS crosstalk in the control of cell death and aging. J Signal Transduction 2012:329635

    Article  CAS  Google Scholar 

  64. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alvarez-Fortes E, Ruiz-Pérez LM, Bouillaud F, Rial E, Rivas L (1998) Expression and regulation of mitochondrial uncoupling protein 1 from brown adipose tissue in Leishmania major promastigotes. Mol Biochem Parasitol 93:191–202

    Article  CAS  PubMed  Google Scholar 

  66. Gull K (1999) The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 53:629–655

    Article  CAS  PubMed  Google Scholar 

  67. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  CAS  PubMed  Google Scholar 

  68. Fidalgo LM, Gille L (2011) Mitochondria and trypanosomatids: targets and drugs. Pharm Res 28:2758–2770

    Article  CAS  PubMed  Google Scholar 

  69. Opperdoes F, Michels P (2008) The metabolic repertoire of Leishmania and implications for drug discovery. After The Genome, Leishmania

    Google Scholar 

  70. Santhamma KR, Bhaduri A (1995) Characterization of the respiratory chain of Leishmania donovani promastigotes. Mol Biochem Parasitol 75:43–53

    Article  CAS  PubMed  Google Scholar 

  71. Monzote L, Gille L (2010) Mitochondria as a promising antiparasitic target. Curr Clin Pharmacol 5:55–60

    Article  CAS  PubMed  Google Scholar 

  72. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed  Google Scholar 

  73. Monzote L, Lackova A, Staniek K, Steinbauer S, Pichler G, Jäger W, Gille L (2016) The antileishmanial activity of xanthohumol is mediated by mitochondrial inhibition. Parasitology 2016:1–13

    Google Scholar 

  74. van Hellemond JJ, Opperdoes FR, Tielens AG (1998) Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proc Natl Acad Sci U S A 95:3036–3041

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 45:2023–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schneider A (2001) Unique aspects of mitochondrial biogenesis in trypanosomatids. Int J Parasitol 31:1403–1415

    Article  CAS  PubMed  Google Scholar 

  77. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217:401–410

    Article  CAS  PubMed  Google Scholar 

  79. Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 283:21649–21654

    Article  CAS  PubMed  Google Scholar 

  80. Nohl H, Gille L, Kozlov A, Staniek K (2003) Are mitochondria a spontaneous and permanent source of reactive oxygen species? Redox Rep 8:135–141

    Article  CAS  PubMed  Google Scholar 

  81. Sen N, Majumder HK (2008) Mitochondrion of protozoan parasite emerges as potent therapeutic target: exciting drugs are on the horizon. Curr Pharm Des 14:839–846

    Article  CAS  PubMed  Google Scholar 

  82. Luque-Ortega JR, Rivas L (2007) Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51:1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Calixto SL, Glanzmann N, Xavier Silveira MM, da Trindade GJ, Gorza Scopel KK, Torres de Aguiar T, DaMatta RA, Macedo GC, da Silva AD, Coimbra ES (2018) Novel organic salts based on quinoline derivatives: the in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp. Chem Biol Interact 293:141–151

    Article  CAS  PubMed  Google Scholar 

  84. Mendonça DVC, Lage DP, Calixto SL, Ottoni FM, Tavares GSV, Ludolf F, Chávez-Fumagalli MA, Schneider MS, Duarte MC, Tavares CAP, Alves RJ, Coimbra ES, Coelho EAF (2018) Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species. Parasitol Res 117:391–403

    Article  PubMed  Google Scholar 

  85. Geroldinger G, Tonner M, Fudickar W, De Sarkar S, Dighal A, Monzote L, Staniek K, Linker T, Chatterjee M, Gille L (2018 Jul 10) Activation of anthracene Endoperoxides in Leishmania and impairment of mitochondrial functions. Molecules 23(7). pii: E1680). https://doi.org/10.3390/molecules23071680

  86. Moreira AL, Scariot DB, Pelegrini BL, Pessini GL, Ueda-Nakamura T, Nakamura CV, Ferreira ICP (2017) Acyclic sesquiterpenes from the fruit pericarp of Sapindus saponaria induce ultrastructural alterations and cell death in Leishmania amazonensis. Evid Based Complement Alternat Med 2017:5620693

    Article  PubMed  PubMed Central  Google Scholar 

  87. Aliança ASDS, Oliveira AR, Feitosa APS, Ribeiro KRC, de Castro MCAB, Leite ACL, Alves LC, Brayner FA (2017) In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives. Eur J Pharm Sci 105:1–10

    Article  CAS  PubMed  Google Scholar 

  88. Villa-Pulgarín JA, Gajate C, Botet J, Jimenez A, Justies N, Varela-M RE, Cuesta-Marbán Á, Müller I, Modolell M, Revuelta JL, Mollinedo F (2017) Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl Trop Dis 11:e0005805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. López-Arencibia A, Martín-Navarro C, Sifaoui I, Reyes-Batlle M, Wagner C, Lorenzo-Morales J, Maciver SK, Piñero JE (2017) Perifosine mechanisms of action in Leishmania species. Antimicrob Agents Chemother 61(4):e02127-16

    Article  PubMed  PubMed Central  Google Scholar 

  90. Garcia FP, Henrique da Silva Rodrigues J, Din ZU, Rodrigues-Filho E, Ueda-Nakamura T, Auzély-Velty R, Nakamura CV (2017) A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction. Apoptosis 22:57–71

    Article  CAS  PubMed  Google Scholar 

  91. Awasthi BP, Kathuria M, Pant G, Kumari N, Mitra K (2016) Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis 21:941–953

    Article  CAS  PubMed  Google Scholar 

  92. Corpas-López V, Merino-Espinosa G, Díaz-Sáez V, Morillas-Márquez F, Navarro-Moll MC, Martín-Sánchez J (2016) The sesquiterpene (−)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis. Apoptosis 21:1071–1081

    Article  CAS  PubMed  Google Scholar 

  93. da Silva JM, Antinarelli LM, Ribeiro A, Coimbra ES, Scio E (2015) The effect of the phytol-rich fraction from Lacistema pubescens against Leishmania amazonensis is mediated by mitochondrial dysfunction. Exp Parasitol 159:143–150

    Article  CAS  PubMed  Google Scholar 

  94. Fonseca-Silva F, Canto-Cavalheiro MM, Menna-Barreto RF, Almeida-Amaral EE (2015) Effect of apigenin on Leishmania amazonensis is associated with reactive oxygen species production followed by mitochondrial dysfunction. J Nat Prod 78:880–884

    Article  CAS  PubMed  Google Scholar 

  95. Lage PS, Chávez-Fumagalli MA, Mesquita JT, Mata LM, Fernandes SO, Cardoso VN, Soto M, Tavares CA, Leite JP, Tempone AG, Coelho EA (2015) Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitol Res 114:4625–4635

    Article  PubMed  Google Scholar 

  96. Monzote L, Lackova A, Staniek K, Cuesta-Rubio O, Gille L (2015) Role of mitochondria in the leishmanicidal effects and toxicity of acyl phloroglucinol derivatives: nemorosone and guttiferone A. Parasitology 142:1239–1248

    Article  CAS  PubMed  Google Scholar 

  97. Rodrigues IA, Azevedo MM, Chaves FC, Alviano CS, Alviano DS, Vermelho AB (2014) Arrabidaea chica hexanic extract induces mitochondrion damage and peptidase inhibition on Leishmania spp. Biomed Res Int 2014:985171

    PubMed  PubMed Central  Google Scholar 

  98. Elmahallawy EK, Jiménez-Aranda A, Martínez AS, Rodriguez-Granger J, Navarro-Alarcón M, Gutiérrez-Fernández J, Agil A Activity of melatonin against Leishmania infantum promastigotes by mitochondrial dependent pathway. Chem Biol Interact 220:84–93

    Google Scholar 

  99. Kathuria M, Bhattacharjee A, Sashidhara KV, Singh SP, Mitra K (2014) Induction of mitochondrial dysfunction and oxidative stress in Leishmania donovani by orally active clerodane diterpene. Antimicrob Agents Chemother 58:5916–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Casanova E, Moreno D, Gigante A, Rico E, Genes CM, Oliva C, Camarasa MJ, Gago F, Jiménez-Ruiz A, Pérez-Pérez MJ (2013) 5′-Trityl-substituted thymidine derivatives as a novel class of antileishmanial agents: Leishmania infantum EndoG as a potential target. ChemMedChem 8:1161–1174

    Article  CAS  PubMed  Google Scholar 

  101. Mesquita-Rodrigues C, Menna-Barreto RF, Sabóia-Vahia L, Da-Silva SA, de Souza EM, Waghabi MC, Cuervo P, De Jesus JB (2013) Cellular growth and mitochondrial ultrastructure of Leishmania (Viannia) braziliensis promastigotes are affected by the iron chelator 2,2-dipyridyl. PLoS Negl Trop Dis 7:e2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mesquita JT, Pinto EG, Taniwaki NN, Galisteo AJ Jr, Tempone AG (2013) Lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide via induction of oxidative stress in Leishmania (L.) infantum. Acta Trop 128:666–673

    Article  CAS  PubMed  Google Scholar 

  103. Ribeiro GA, Cunha-Júnior EF, Pinheiro RO, da-Silva SA, Canto-Cavalheiro MM, da Silva AJ, Costa PR, Netto CD, Melo RC, Almeida-Amaral EE, Torres-Santos EC (2013) LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J Antimicrob Chemother 68:789–799

    Article  CAS  PubMed  Google Scholar 

  104. de Macedo-Silva ST, Urbina JA, de Souza W, Rodrigues JC (2013) In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis. PLoS One 8:e83247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Britta EA, Silva AP, Ueda-Nakamura T, Dias-Filho BP, Silva CC, Sernaglia RL, Nakamura CV (2012) Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis. PLoS One 7:e41440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lopes MV, Desoti VC, Caleare Ade O, Ueda-Nakamura T, Silva SO, Nakamura CV (2012) Mitochondria superoxide anion production contributes to geranylgeraniol-induced death in Leishmania amazonensis. Evid Based Complement Alternat Med 2012:298320

    Article  PubMed  PubMed Central  Google Scholar 

  107. Inacio JD, Canto-Cavalheiro MM, Menna-Barreto RF, Almeida-Amaral EE (2012) Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis. Exp Parasitol 132:151–155

    Article  CAS  PubMed  Google Scholar 

  108. Medina JM, Rodrigues JC, De Souza W, Atella GC, Barrabin H (2012) Tomatidine promotes the inhibition of 24-alkylated sterol biosynthesis and mitochondrial dysfunction in Leishmania amazonensis promastigotes. Parasitology 139:1253–1265

    Article  CAS  PubMed  Google Scholar 

  109. Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2011) Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 6:e14666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Monzote Fidalgo L, Sariego Ramos I, García Parra M, Cuesta-Rubio O, Márquez Hernández I, Campo Fernández M, Piccinelli AL, Rastrelli L (2011) Activity of Cuban propolis extracts on Leishmania amazonensis and Trichomonas vaginalis. Nat Prod Commun 6:973–976

    PubMed  Google Scholar 

  111. Luque-Ortega JR, Reuther P, Rivas L, Dardonville C (2010) New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem 53:1788–1798

    Article  CAS  PubMed  Google Scholar 

  112. Carvalho L, Luque-Ortega JR, Manzano JI, Castanys S, Rivas L, Gamarro F (2010) Tafenoquine, an antiplasmodial 8-aminoquinoline, targets Leishmania respiratory complex III and induces apoptosis. Antimicrob Agents Chemother 54:5344–5351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Saha P, Sen R, Hariharan C, Kumar D, Das P, Chatterjee M (2009) Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes. Free Radic Res 43:1101–1110

    Article  CAS  PubMed  Google Scholar 

  114. Kaur J, Singh BK, Tripathi RP, Singh P, Singh N (2009) Leishmania donovani: a glycosyl dihydropyridine analogue induces apoptosis like cell death via targeting pteridine reductase 1 in promastigotes. Exp Parasitol 123:258–264

    Article  CAS  PubMed  Google Scholar 

  115. Tempone AG, Taniwaki NN, Reimão JQ (2009) Antileishmanial activity and ultrastructural alterations of Leishmania (L.) chagasi treated with the calcium channel blocker nimodipine. Parasitol Res 105:499–505

    Article  PubMed  Google Scholar 

  116. Sarkar A, Sen R, Saha P, Ganguly S, Mandal G, Chatterjee M (2008) An ethanolic extract of leaves of Piper betle (Paan) Linn mediates its antileishmanial activity via apoptosis. Parasitol Res 102:1249–1255

    Article  PubMed  Google Scholar 

  117. Roy A, Ganguly A, BoseDasgupta S, Das BB, Pal C, Jaisankar P, Majumder HK (2008) Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3′-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 74:1292–1307

    Article  CAS  PubMed  Google Scholar 

  118. Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L (2008) Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J 22:1817–1828

    Article  CAS  PubMed  Google Scholar 

  119. Dutta A, Bandyopadhyay S, Mandal C, Chatterjee M (2007) Aloe vera leaf exudate induces a caspase-independent cell death in Leishmania donovani promastigotes. J Med Microbiol 56:629–636

    Article  CAS  PubMed  Google Scholar 

  120. Rodrigues JC, Bernardes CF, Visbal G, Urbina JA, Vercesi AE, de Souza W (2007) Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. Protist 158:447–456

    Article  CAS  PubMed  Google Scholar 

  121. Delfín DA, Bhattacharjee AK, Yakovich AJ, Werbovetz KA (2006) Activity of and initial mechanistic studies on a novel antileishmanial agent identified through in silico pharmacophore development and database searching. J Med Chem 49:4196–4207

    Article  CAS  PubMed  Google Scholar 

  122. Tempone AG, da Silva AC, Brandt CA, Martinez FS, Borborema SE, da Silveira MA, de Andrade HF Jr (2005) Synthesis and antileishmanial activities of novel 3-substituted quinolines. Antimicrob Agents Chemother 49:1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Magán R, Marín C, Rosales MJ, Salas JM, Sánchez-Moreno M (2005) Therapeutic potential of new Pt(II) and Ru(III) triazole-pyrimidine complexes against Leishmania donovani. Pharmacology 73:41–48

    Article  CAS  PubMed  Google Scholar 

  124. Tavares J, Ouaissi A, Lin PK, Tomás A, Cordeiro-da-Silva A (2005) Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes. Int J Parasitol 35:637–646

    Article  CAS  PubMed  Google Scholar 

  125. Rodrigues JC, Urbina JA, de Souza W (2005) Antiproliferative and ultrastructural effects of BPQ-OH, a specific inhibitor of squalene synthase, on Leishmania amazonensis. Exp Parasitol 111:230–238

    Article  CAS  PubMed  Google Scholar 

  126. Luque-Ortega JR, Martínez S, Saugar JM, Izquierdo LR, Abad T, Luis JG, Piñero J, Valladares B, Rivas L (2004) Fungus-elicited metabolites from plants as an enriched source for new leishmanicidal agents: antifungal phenyl-phenalenone phytoalexins from the banana plant (Musa acuminata) target mitochondria of Leishmania donovani promastigotes. Antimicrob Agents Chemother 48:1534–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Delorenzi JC, Attias M, Gattass CR, Andrade M, Rezende C, da Cunha PA, Henriques AT, Bou-Habib DC, Saraiva EM (2001) Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrob Agents Chemother 45:1349–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ott R, Chibale K, Anderson S, Chipeleme A, Chaudhuri M, Guerrah A, Colowick N, Hill GC (2006) Novel inhibitors of the trypanosome alternative oxidase inhibit Trypanosoma brucei brucei growth and respiration. Acta Trop 100:172–184

    Article  CAS  PubMed  Google Scholar 

  129. Dantas-Leite L, Urbina JA, de Souza W, Vommaro RC (2004) Selective anti-Toxoplasma gondii activities of azasterols. Int J Antimicrob Agents 23:620–626

    Article  CAS  PubMed  Google Scholar 

  130. Muelas-Serrano S, Le-Senne A, Fernandez-Portillo C, Nogal JJ, Ochoa C, Gomez-Barrio A (2002) In vitro and in vivo anti-Trypanosoma cruzi activity of a novel nitro-derivative. Mem Inst Oswaldo Cruz 97:553–557

    Article  CAS  PubMed  Google Scholar 

  131. Faccenda D, Campanella M (2012) Molecular regulation of the mitochondrial F(1)F(o)-ATPsynthase: physiological and pathological significance of the inhibitory factor 1 (IF(1)). Int J Cell Biol 2012:367934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. De Sarkar S, Sarkar D, Sarkar A, Dighal A, Chakrabarti S, Staniek K, Gille L, Chatterjee M (2019) The leishmanicidal activity of artemisinin is mediated by cleavage of the endoperoxide bridge and mitochondrial dysfunction. Parasitology 146:511–520

    Google Scholar 

  133. Sen R, Chatterjee M (2011) Plant derived therapeutics for the treatment of leishmaniasis. Phytomedicine 18:1056–1069

    Google Scholar 

  134. Jain V, Jain V (2018) Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discov Today 23:161–170

    Google Scholar 

  135. Chatterjee M, Saha P, Sarkar A, Ghosh S, Mukherjee S, Roy S, Mukhopadhyay D (2012) In: Ray A, Gulati K (eds) Emerging druggable targets in leishmaniasis. Vidyanilyam Prakashan, Delhi. Chapter 18, pp 319–340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitali Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Sarkar, S., Chatterjee, M. (2019). Exploring Endoperoxides as Leishmanicidal Compounds. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_24

Download citation

Publish with us

Policies and ethics