Skip to main content

Oxidative Stress Regulation in Giardia lamblia

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases
  • 482 Accesses

Abstract

Giardia lamblia is a common gut parasite that infects the human gastrointestinal tract and causes 280 million cases of diarrhea every year. There are several reports on oxidative stress management in G. lamblia and how Giardia establishes its pathogenesis against the high oxygen tension in the gut. Here we have discussed about four oxidative stress-generating conditions which are actually mimicking the environment where Giardia resides. This chapter explored the fact that pyruvate, a crucial intermediary metabolite, acts as an antioxidant. This chapter has also elucidated the conserved and stress-specific responses of the trophozoite under different stressed conditions. The chapter will unveil the information generated by proteomic study. The chapter will also reveal how oxidative stress regulation works in Giardia trophozoites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam RD (2001) The biology of Giardia spp. Clin Microbiol Rev 55:706–732

    Google Scholar 

  2. Andrae U, Singh J, Ziegler-Skylakakis K (1985) Pyruvate and related α-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Lett 28:93–98

    Article  CAS  PubMed  Google Scholar 

  3. Ankarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG (2010) Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8:413–422

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson HJ (1980) Respiration. In: Zuckerman BH (ed) Nematodes as biological models. Academic, London, pp 101–138

    Google Scholar 

  5. Atkinson HJ, Babbitt PC, Sajid M (2009) The global cysteine peptidase landscape in parasites. Trends Parasitol 25:573–581

    Google Scholar 

  6. Bar-Or D, Rael LT, Lau EP, Rao NK, Thomas GW, Winkler JV, Yukl RL, Kingston RG, Curtis CG (2001) An analog of the human albumin N-terminus (Asp-AlaHis-Lys) prevents formation of copper-induced reactive oxygen species. Biochem Biophys Res Commun 284:856–862

    Article  CAS  PubMed  Google Scholar 

  7. Biagini GA, Suller MTE, Finlay BJ, Lloyd D (1997) Oxygen uptake and antioxidant responses of the free-living diplomonad Hexamita sp. J Eukaryot Microbiol 44:447–453

    Article  CAS  PubMed  Google Scholar 

  8. Biagini GA, Mclntyre PS, Finlay BJ, Lloyd D (1998) Carbohydrate and amino acid fermentation in the free-living primitive protozoon Hexamita sp. Appl Environ Microbiol 64:203–207

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Biagini GA, Park JH, Lloyd D, Edwards MR (2001) The antioxidant potential of pyruvate in the amitochondriate diplomonads Giardia intestinalis and Hexamita inflata. Microbiology 147:3359–3365

    Article  CAS  PubMed  Google Scholar 

  10. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37. [Review]

    Article  CAS  PubMed  Google Scholar 

  11. Brown DM, Upcroft JA, Upcroft P (1993) Cysteine is the major low molecular weight thiol in Giardia duodenalis. Mol Biochem Parasitol 61:155–158

    Article  CAS  PubMed  Google Scholar 

  12. Brown DM, Upcroft JA, Upcroft P (1995) Free radical detoxification in Giardia duodenalis. Mol Biochem Parasitol 72(1–2):47–56

    Article  CAS  PubMed  Google Scholar 

  13. Brown DM, Upcroft JA, Upcroft P (1996) A thioredoxin reductase-class of disulphide reductase in the protozoan parasite Giardia duodenalis. Mol Biochem Parasitol 83(2):211–220

    Article  CAS  PubMed  Google Scholar 

  14. Brown DM, Upcroft JA, Edwards MR, Upcroft P (1998) Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis. Int J Parasitol 28(1):149–164

    Article  CAS  PubMed  Google Scholar 

  15. Bruchhaus I, Roeder T, Rennenberg A, Heussler VT (2007) Protozoan parasites: programmed cell death as a mechanism of parasitism. Trends Parasitol 23(8):376–383

    Article  CAS  PubMed  Google Scholar 

  16. Bruderer T, Wehrli C, Kohler P (1996) Cloning and characterization of the gene encoding pyruvate phosphate dikinase from Giardia duodenalis. Mol Biochem Parasitol 77:225–233

    Article  CAS  PubMed  Google Scholar 

  17. Bunton CA (1949) Oxidation of α-diketones and α-keto acids by hydrogen peroxide. Nature 144–163:444

    Article  Google Scholar 

  18. Buret AG (2007) Mechanisms of epithelial dysfunction in giardiasis. Gut 56:316–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burton GW, Ingold KU (1989) Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci 570:7–22

    Article  CAS  PubMed  Google Scholar 

  20. Cacciò SM, Ryan U (2008) Molecular epidemiology of giardiasis. Mol Biochem Parasitol 160(2):75–80

    Article  CAS  PubMed  Google Scholar 

  21. Chose O, Sarde CO, Gerbod D, Viscogliosi E, Roseto A (2003) Programmed cell death in parasitic protozoans that lack mitochondria. Trends Parasitol 19:559–564

    Google Scholar 

  22. Cillard J, Cillard P, Cormier M, Girre L (1980) Alpha-tochopherol prooxidant effect in aqueous media: increased autoxidation rate of linoleic acid. J Am Oil Chem Soc 57:252–255

    Article  CAS  Google Scholar 

  23. Corrêa Mde P, Ferreira AP, Gollner AM, Rodrigues MF, Guerra MC (2009) Markers expression of cell proliferation and apoptosis in basal cell carcinoma. An Bras Dermatol 84(6):606–614

    Article  PubMed  Google Scholar 

  24. Darzynkiewicz Z, Pozarowski P (2007) All that glitters is not gold: all that FLICA binds is not caspase. A caution in data interpretation--and new opportunities. Cytometry A 71(8):536–537

    Article  PubMed  Google Scholar 

  25. Debrabant A, Lee N, Bertholet S, Duncan R, Nakhasi HL (2003) Programmed cell death in trypanosomatids and other unicellular organisms. Int J Parasitol 33:257–267

    Google Scholar 

  26. Dib HH, Lu SQ, Wen SF (2008) Prevalence of Giardia lamblia with or without diarrhea in South East, South East Asia and the Far East. Parasitol Res 103:239–251

    Article  PubMed  Google Scholar 

  27. Dobell C (1920) The discovery of the intestinal protozoa of man. Proc R Soc Med 1920:13

    Google Scholar 

  28. Eckmann L (2003) Mucosal defences against Giardia. Parasite Immunol 25(5):259–270

    Article  CAS  PubMed  Google Scholar 

  29. Edwards MR, Schofield PJ, O’Sullivan WJ, Costello M (1992) Arginine metabolism during culture of Giardia intestinalis. Mol Biochem Parasitol 53(1–2):97–103

    Article  CAS  PubMed  Google Scholar 

  30. Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, Neiman A, Lujan HD (2008) Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem 283(51):35996–36010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evans PJ, Gallesi D, Mathieu C, Hernandez MJ, Felipe M, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79

    Article  CAS  Google Scholar 

  32. Feng Y, Xiao L (2011) Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 24:110–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Floriano-Sánchez E, Villanueva C, Medina-Campos ON, Rocha D, Sánchez-González DJ, Cárdenas-Rodríguez N, Pedraza-Chaverrí J (2006) Nordihydroguaiaretic acid is a potent in vitro scavenger of peroxynitrite, singlet oxygen, hydroxyl radical, superoxide anion and hypochlorous acid and prevents in vivo ozone-induced tyrosine nitration in lungs. Free Radic Res 40(5):523–533

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh E, Ghosh A, Ghosh AN, Nozaki T, Ganguly S (2009) Oxidative stress-induced cell cycle blockage and a protease-independent programmed cell death in microaerophilic Giardia lamblia. Drug Des Devel Ther 3:103–110

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gillin FD, Reiner DS (1982) Attachment of the flagellate Giardia lamblia: role of reducing agents, serum, temperature, and ionic composition. Mol Cell Biol 2(4):369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gillin FD, Reiner DS, Levy RB, Henkart PA (1984) Thiol groups on the surface of anaerobic parasitic protozoa. Mol Biol Biochem Parasitol 13(1):1–12

    Article  CAS  Google Scholar 

  37. Groussard C, Morell I, Chevanne M, Monnier M, Cillard J, Delamarche A (2000) Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J Appl Physiol 89:169–175

    Article  CAS  PubMed  Google Scholar 

  38. Haque R, Roy S, Kabir M, Stroup SE, Mondal D, Houpt ER (2005) Giardia assemblage a infection and diarrhea in Bangladesh. J Infect Dis 192:2171–2173

    Article  PubMed  Google Scholar 

  39. Helms MJ, Ambit A, Appleton P, Tetley L, Coombs GH, Mottram JC (2006) Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 119(6):1105–1117

    Article  CAS  PubMed  Google Scholar 

  40. Herbener GH (1976) A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J Gerontol 31:8–12

    Article  CAS  PubMed  Google Scholar 

  41. Holleman AF (1904) Notice sur l’action de l’eau oxygénée sur les acides αcétoniques et sur les dicétones 1.2. Recl Trav Chim Pays Bas 23:169–171

    Google Scholar 

  42. Jaroll EL, Paget TA (1995) Carbohydrate and amino acid metabolism in Giardia: a review. Fol Parasitol 42:81–89

    Google Scholar 

  43. Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Review Cell Death Differentiation 9:394–404

    Google Scholar 

  44. Lane S. And Lloyd D. (2002) Current trends in research into the waterborne parasite Giardia; Crit Rev Microbiol; 28: 123–147

    Article  PubMed  Google Scholar 

  45. Le Chat L, Sinden RE, Dessens JT (2007) The role of metacaspase 1 in Plasmodium berghei development and apoptosis. Mol Biochem Parasitol 153(1):41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lindmark DG (1980) Energy metabolism of the anaerobic protozoan Giardia lamblia. Mol Biochem Parasitol 1:1–12

    Article  CAS  PubMed  Google Scholar 

  47. Lloyd D, Harris JC, Maroulis S, Biagini GA, Wadley RB, Turner MP, Edwards MR (2000) The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity. Microbiology 146(Pt 12):3109–3118

    Article  CAS  PubMed  Google Scholar 

  48. Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20

    Google Scholar 

  49. Lujan HD, Byrd LG, Mowatt MR, Nash TE (1994) Serum Cohn fraction IV-1 supports the growth of Giardia lamblia in vitro. Infect Immun 62(10):4664–4666

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma Q (2010) Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 125:376–393

    Article  CAS  PubMed  Google Scholar 

  51. Mastronicola D, Giuffrè A, Testa F, Mura A, Forte E, Bordi E, Pucillo LP, Fiori PL, Sarti P (2011) Giardia intestinalis escapes oxidative stress by colonizing the small intestine: a molecular hypothesis. IUBMB Life 63(1):21–25

    Article  CAS  PubMed  Google Scholar 

  52. Mastronicola D, Falabella M, Testa F, Pucillo LP, Teixeira M, Sarti P, Saraiva LM, Giuffrè A (2014) Functional characterization of peroxiredoxins from the human protozoan parasite Giardia intestinalis. PLoS Negl Trop Dis 8(1):e2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mazzoni C, Falcone C (2008) Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783(7):1320–1327

    Article  CAS  PubMed  Google Scholar 

  54. Mead JM (1976) Free radical mechanisms of lipid damage and consequences for cellular membranes. Academic, London, pp 51–68

    Google Scholar 

  55. Mendis A, Thompson R, Reynoldson J, Armson A, Meloni B, Gunsberg S (1992) The uptake and conversion of 1-[U14C-] aspartate and L-[U14C-] to 14CO2 by intact trophozoites of Giardia duodenalis. Comp Biochem Physiol 102:235–239

    Google Scholar 

  56. Menna-Barreto RF, Goncalves RL, Costa EM, Silva RS, Pinto AV, Oliveira MF, de Castro SL (2009) The effects onTrypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 47:644–653

    Google Scholar 

  57. Müller M (1988) Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42:465–488

    Google Scholar 

  58. Müller N, von Allmen N (2005) Recent insights into the mucosal reactions associated with Giardia lamblia infections. Int J Parasitol 35(13):1339–1347

    Google Scholar 

  59. Nandi M, Sarkar S (2013) Albendazole-induced recurrent hepatitis. Indian Pediatr:1064–1050. https://doi.org/10.1007/s13312-013-0285-8

  60. Nash TE (2013) Unraveling how Giardia infections cause disease. J Clin Invest 123(6):2346–2347

    Google Scholar 

  61. Nash TE, Aggarwal A (1986) Cytotoxicity of monoclonal antibodies to a subset of Giardia isolates. J Immunol 136(7):2628–2632

    CAS  PubMed  Google Scholar 

  62. Nash TE, Banks SM, Alling DW, Merritt JW Jr, Conrad JT (1990) Frequency of variant antigens in Giardia lamblia. Exp Parasitol 1(4):415–421

    Article  Google Scholar 

  63. Ortega-Pierres G, Smith HV, Cacciò SM, Thompson RC (2009) New tools provide further insights into Giardia and Cryptosporidium biology. Trends Parasitol 25(9):410–416

    Article  PubMed  Google Scholar 

  64. Paget, T. A., Kelly, M. L., Jarrol, E. L., Lindmark, D. G. And Lloyd D. (1993): The effects of oxygen on fermentation in Giardia lamblia. Mol Biochem Parasitol, 57: 65–72

    Article  CAS  PubMed  Google Scholar 

  65. Pal C, Bandyopadhyay U (2012) Redox-active antiparasitic drugs. Antioxid Redox Signal 17:555–582. https://doi.org/10.1089/ars.2011.4436

    Article  CAS  PubMed  Google Scholar 

  66. Pérez-Arriaga L, Mendoza-Magaña ML, Cortés-Zárate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R, Ramírez-Herrera MA (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98:152–161

    Google Scholar 

  67. Raj D, Ghosh E, Mukherjee AK, Nozaki T, Ganguly S (2014) Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution. Gene 535(2):131–139

    Article  CAS  PubMed  Google Scholar 

  68. Raj D, Saini P, Nozaki T, Ganguly S (2015) Involvement of pyruvate on oxidative stress management in the microaerophilic protozoan parasite Giardia lamblia. Int J Adv Res 3:1148–1166

    CAS  Google Scholar 

  69. Raj D, Chowdhury P, Sarkar R, Nakano YS, Okamoto K, Dutta S, Nozaki T, Ganguly S (2017) Pyruvate protects Giardia trophozoites from cysteine-ascorbate deprived medium induced cytotoxicity. Korean J Parasitol 1:1–9

    Google Scholar 

  70. Rendtorff RC (1954) The experimental transmission of human intestinal protozoan parasites. II. Giardia lamblia cysts given in capsules. Am J Hyg 59(2):209–220

    Google Scholar 

  71. Rosa Ide A, Einicker-Lamas M, Bernardo RR, Benchimol M (2008) Cardiolipin, a lipid found in mitochondria, hydrogenosomes and bacteria was not detected in Giardia lamblia. Exp Parasitol 120(3):215–220

    Article  CAS  PubMed  Google Scholar 

  72. Sandhu H, Mahajan RC, Ganguly NK (2004) Flow cytometric assessment of the effect of drugs on Giardia lamblia trophozoites in vitro. Mol Cell Biochem 265:151–160

    Google Scholar 

  73. Sandhu SK, Kaur G (2003) Mitochondrial electron transport chain complexes in aging rat brain and lymphocytes. Biogerontology 4:19–29

    Article  CAS  PubMed  Google Scholar 

  74. Savioli L, Smith H, Thompson A (2006) Giardia and cryptosporidium join the ‘neglected diseases initiative’. Trends Parasitol 22:203–208

    Article  CAS  PubMed  Google Scholar 

  75. Schofield PJ, Costello M, Edwards MR, O’Sullivan WJ (1990) The arginine dihydrolase pathway is present in Giardia intestinalis. Int J Parasitol 20:697–699

    Article  CAS  PubMed  Google Scholar 

  76. Schuessel K, Frey C, Jourdan C, Keil V, Weber CC, Muller F, Muller WE, Echest A (2006) Aging sensitizes toward ROS formation and lipid peroxidation in PSIM146L transgenic mice. Free Radic Biol Med 40:850–862

    Article  CAS  PubMed  Google Scholar 

  77. Scott KG, Meddings JB, Kirk DR, Lees-Miller SP, Buret AG (2002) Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology 123:1179–1190

    Article  CAS  PubMed  Google Scholar 

  78. Shemarova IV (2010) Signalling mechanisms of apoptosis like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 155:341–353

    Google Scholar 

  79. Silva RR, da Silva CA, de Jesus Pereira CA, de Carvalho Nicolato RL, Negrao-Correa D, Lamounier JA, Carneiro M (2009) Association between nutritional status, environmental and socio-economic factors and Giardia lamblia infections among children aged 6–71 months in Brazil. Trans R Soc Trop Med Hyg 103:512–519

    Article  PubMed  Google Scholar 

  80. Svärd SG, Hagblom P, Palm JE (2003) Giardia lamblia – a model organism for eukaryotic cell differentiation. FEMS Microbiol Lett 218:3–7

    Google Scholar 

  81. Sweeny JP, Ryan UM, Robertson ID, Jacobson C (2011) Cryptosporidium and Giardia associated with reduced lamb carcase productivity. Vet Parasitol 182:127–139

    Article  PubMed  Google Scholar 

  82. Takizawa MG, Falavigna DL, Gomes ML (2009) Enteroparasitosis and their ethnographic relationship to food handlers in a tourist and economic center in Parana, Southern Brazil. Rev Inst Med Trop Sao Paulo 51:31–35

    Article  PubMed  Google Scholar 

  83. Tan KSW, Nasirudeen AMA (2005) Protozoan programmed cell death – insights from Blastocystis deathstyles. Trends Parasitol 21:547–550

    Google Scholar 

  84. Tekwani BL, Mehlotra RK (1999) Molecular basis of defence against oxidative stress in Entamoeba histolytica and Giardia lamblia. Microbes Infect 1:385–394. [review]

    Article  CAS  PubMed  Google Scholar 

  85. Tellez A, Winiecka-Krusnell J, Paniagua M, Linder E (2003) Antibodies in mother’s milk protect children against giardiasis. Scand J Infect Dis 35(5):322–325

    Article  PubMed  Google Scholar 

  86. Thompson RC (2000) Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int J Parasitol 30(12–13):1259–1267

    Google Scholar 

  87. Thompson EB, Webb MS, Miller AL, Fofanov Y, Johnson BH (2004) Identification of genes leading to glucocorticoid-induced leukemic cell death. Lipids 39(8):821–825

    Article  CAS  PubMed  Google Scholar 

  88. Townson SM, Upcroft JA, Upcroft P (1996) Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis. Mol Biochem Parasitol 79(2):183–193

    Article  CAS  PubMed  Google Scholar 

  89. Upcroft J, Upcroft P (1998) My favorite cell: Giardia. Bio Essays 20:256–263, John Wiley & Sons, Inc.

    Google Scholar 

  90. Von Allmen N, Bienz M, Hemphill A, Müller N (2004) Experimental infections of neonatal mice with cysts of Giardia lamblia clone GS/M-83-H7 are associated with an antigenic reset of the parasite. Infect Immun 72(8):4763–4771

    Article  CAS  Google Scholar 

  91. Vorbeck M, Martin A, Park J, Townsend J (1982) Aging related decrease in hepatic cytochrome oxidase of the Fischer 344 rat. Arch Biochem Biophys 214:67–79

    Article  CAS  PubMed  Google Scholar 

  92. Watkins RR, Eckmann L (2014) Treatment of giardiasis: current status and future directions. Curr Infect Dis Rep 16:396. https://doi.org/10.1007/s11908-0140396-y

    Article  PubMed  Google Scholar 

  93. Xiao L, Fayer R (2008) Molecular characterisation of species and genotypes of Cryptosporidium and Giardia. Int J Parasitol 38:1239–1255

    Article  CAS  PubMed  Google Scholar 

  94. Yoder JS, Gargano JW, Wallace RM, Beach MJ (2012) Giardiasis surveillance-United States, 2009–2010. Centers for disease control and prevention (CDC). MMWR Surveill Summ 61:13–23

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipan Ganguly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, D., Ganguly, S. (2019). Oxidative Stress Regulation in Giardia lamblia . In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_15

Download citation

Publish with us

Policies and ethics