Skip to main content

Biofuels Generation Based on Technical Process and Biomass Quality

  • Chapter
  • First Online:
Biofuel Production Technologies: Critical Analysis for Sustainability

Abstract

There is a wide variety of biomass types, implicating in biofuels and conversion process differences. Lignocellulosic biomass, for instance, can be converted into biofuels by biotechnology route. There are first-, second-, third-, and fourth-generation biofuels coming from different kinds of biomass and process. Besides biofuels, the carbohydrate and lignin of these biomasses can be used to generate other products of aggregated value. The biomasses have properties that resist the conversion processes, such as crystallinity and lignin contents. These difficulties are fought with genetic engineering and pretreatments to alter the material structure, decreasing the heterogeneity and recalcitrance, improving enzymatic hydrolysis and consequently the conversion into biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar MM, Ferreira LFR, Monteiro RTR (2010) Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Braz Arch Biol Technol 53(5):1245–1254

    Article  Google Scholar 

  • Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513

    Article  CAS  Google Scholar 

  • Allwright MR, Taylor G (2016) Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci 21(1):43–54

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):4

    Article  CAS  Google Scholar 

  • Asada C, Sasaki C, Suzuki A, Nakamura Y (2018) Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valoriz 9:2423–2432. https://doi.org/10.1007/s12649-017-0157-x

    Article  CAS  Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016) Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Cogent Eng 3(1):1134304

    Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    Article  CAS  Google Scholar 

  • Benjamin Y, Görgens JF (2015) Improving sugar conversion and bioethanol yield through transgenic sugarcane clone in South Africa. Int J Environ Bioenergy 10(1, October):9–25

    CAS  Google Scholar 

  • Benjamin Y, Cheng H, Görgens JF (2013) Evaluation of bagasse from different varieties of sugarcane by dilute acid pretreatment and enzymatic hydrolysis. Ind Crops Prod Elsevier B.V. 51:7–18. https://doi.org/10.1016/j.indcrop.2013.08.067

    Article  CAS  Google Scholar 

  • Bezerra TL, Ragauskas AJ (2016) A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod Biorefin 10(5):634–647

    Article  CAS  Google Scholar 

  • Bhagwat S, Ratnaparkhe S, Kumar A (2015) Biomass pre-treatment methods and their economic viability for efficient production of biofuel. Br Biotechnol J 8:1–17. https://doi.org/10.9734/BBJ/2015/18284

    Article  CAS  Google Scholar 

  • Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett 37:1117–1129. https://doi.org/10.1007/s10529-015-1779-3

    Article  CAS  Google Scholar 

  • Bian J, Peng F, Peng XP, Xiao X, Peng P, Xu F, Sun RC (2014) Effect of [Emim] ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydr Polym 100:211–217

    Article  CAS  Google Scholar 

  • BNDES, National Development Bank (2011) Perspectivas do setor de biomassa de madeira para a geração de energia. https://web.bndes.gov.br/bib/jspui/bitstream/1408/2523/1/A%20BS%2033%20Perspectivas%20do%20setor%20de%20biomassa%20de%20madeira%20para%20a%20gera%C3%A7%C3%A3o%20de%20energia_P.pdf. Accessed 8 Jan 2019.

  • BNDES, National Development Bank (2018) Biogás de resíduos agroindustriais: panorama e perspectivas. https://web.bndes.gov.br/bib/jspui/bitstream/1408/15384/1/BS47__Biogas__FECHADO.pdf. Accessed 29 Jan 2019.

  • Brazilian Ministry of Mines and Energy (2017) Impactos da participação do biogas e do biometano na matriz brasileira. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-244/topico-257/EPE_IV%20FORUM%20BIOGAS_JOSE%20MAURO_2017_1710.pdf. Accessed 10 Jan 2019.

  • Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46(2):199–204

    Article  CAS  Google Scholar 

  • Brienzo M, Carvalho W, Milagres AM (2010) Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 162(4):1195–1205

    Article  CAS  Google Scholar 

  • Brienzo M, Ferreira S, Vicentim MP, de Souza W, Sant’Anna C (2014) Comparison study on the biomass recalcitrance of different tissue fractions of sugarcane culm. Bioenergy Res 7(4):1454–1465

    Article  CAS  Google Scholar 

  • Brienzo M, Fikizolo S, Benjamin Y, Tyhoda L, Görgens J (2017) Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renew Energy 104:271–280

    Article  CAS  Google Scholar 

  • Brillouet JM, Joseleau JP (1987) Investigation of the structure of a heteroxylan from the outer pericarp (beeswing bran) of wheat kernel. Carbohydr Res 159(1):109–126

    Article  CAS  Google Scholar 

  • Brosse N, El Hage R, Chaouch M, Pétrissans M, Dumarçay S, Gérardin P (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym Degrad Stab 95(9):1721–1726

    Article  CAS  Google Scholar 

  • Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84

    Article  CAS  Google Scholar 

  • Campos BB (2015) Produção de etanol em biomassa de capim-elefante por Kluyveromyces marxianus CCT 7735. Dissertation, Federal University of Viçosa

    Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin DA, Pan X, Saddler JN (2007) Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Biofuels. Springer, Berlin Heidelberg, pp 67–93

    Chapter  Google Scholar 

  • Chandra RP, Esteghlalian AR, Saddler JN (2008) Assessing substrate accessibility to enzymatic hydrolysis by cellulases. In: Characterization of lignocellulosic materials, pp 60–80. https://doi.org/10.1002/9781444305425.ch4

    Chapter  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98(10):1947–1950

    Article  CAS  Google Scholar 

  • Chen JH, Wang K, Xu F, Sun RC (2015) Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose 22(1):63–72

    Article  CAS  Google Scholar 

  • Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review Chem Biomolecular Eng 2:121–145

    Article  CAS  Google Scholar 

  • CONAB, National Supply Company (2018) Análise mensal sorgo Março de 2018. https://www.conab.gov.br/info-agro/analises-do-mercadoagropecuarioextrativista/analises-do-mercado/historico-mensal-de-sorgo. Accessed 5 Jan 2019

  • CONAB, National Supply Company. Produção total de etanol no Brasil bate recorde com 32,3 bilhões de litros (2018). https://www.conab.gov.br/ultimas-noticias/2630-producao-total-de-etanol-no-brasil-bate-recorde-com-32-3-bilhoes-de-litros. Accessed 3 Jan 2019

  • Cosgrove DJ (2005) Growth of the plant cell wall. Na Rev Mol Cell Biol 6(11):850

    Article  CAS  Google Scholar 

  • Crowe JD, Zarger RA, Hodge DB (2017) Relating nanoscale accessibility within plant cell walls to improved enzyme hydrolysis yields in corn stover subjected to diverse pretreatments. J Agric Food Chem 65(39):8652–8662

    Article  CAS  Google Scholar 

  • De Bhowmick G, Sarmah AK, Sen R (2018) Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol 247:1144–1154. https://doi.org/10.1016/j.biortech.2017.09.163

    Article  CAS  Google Scholar 

  • Defanti LS, Siqueira NS, Linhares PC (2010) Produção de biocombustíveis a partir de algas fotossintetizantes. Bolsista de Valor 1:11–21

    Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34

    Article  CAS  Google Scholar 

  • Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28

    Article  CAS  Google Scholar 

  • Dotsenko AS, Gusakov AV, Rozhkova AM et al (2018) Enzymatic hydrolysis of cellulose using mixes of mutant forms of cellulases from Penicillium verruculosum. Moscow Univ Chem Bull 73:58–62. https://doi.org/10.3103/S0027131418020037

    Article  Google Scholar 

  • du Preez JC (2016) Editorial: chemicals and bioproducts from biomass. Biotechnol Biofuels 9:233. https://doi.org/10.1186/s13068-016-0637-4

    Article  Google Scholar 

  • EMBRAPA, Brazilian Agricultural Research Corporation (2014) Cultivo de Pínus. https://www.spo.cnptia.embrapa.br/conteudo?p_p_id=conteudoportlet_WAR_sistemasdeproducaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column1&p_p_col_count=1&p_r_p_76293187_sistemaProducaoId=3715&p_r_p_-996514994_topicoId=3229. Accessed 17 Jan 2019

  • EMBRAPA, Brazilian Agricultural Research Corporation (2015) Pesquisa investe em capim como fonte de energia. https://www.embrapa.br/busca-de-noticias/-/noticia/2422024/pesquisa-investe-em-capim-como-fonte-de-energia. Accessed 5 Feb 2019

  • EMBRAPA, Brazilian Agricultural Research Corporation (2018) Embrapa soja. https://www.embrapa.br/soja/cultivos/soja1/dados-economicos. Accessed 19 Jan 2019

  • Espinosa L, Tapanes NLCOM, Aranda DAG, Cruz YR (2014) As microalgas como fonte de produção de biodiesel: discussão de sua viabilidade. Acta Sci Techn 2(1):1–10

    Google Scholar 

  • Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, React 613:1960–1982

    Google Scholar 

  • Flores RA et al (2012) Yield and quality of elephant grass biomass produced in the cerrados region for bioenergy. Eng. Agríc 32(5):831–839

    Article  Google Scholar 

  • Franco ALC (2013) Biodiesel de microalgas: avanços e desafios. Química Nova 36(3):437–448

    Article  CAS  Google Scholar 

  • Freudenberg K (1965) Lignin: its constitution and formation from p-hydroxycinnamyl alcohols. Science 148(3670):595–600

    Article  CAS  Google Scholar 

  • Furtado A et al (2014) Modifying plants for biofuel and biomaterial production. Plant Biotechnol J 12:1246–1258. https://doi.org/10.1111/pbi.12300

    Article  CAS  Google Scholar 

  • Gao J, Chen L, Yuan K, Huang H, Yan Z (2013) Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresour Technol 150:352–358

    Article  CAS  Google Scholar 

  • Gill JR et al (2014) Yield Results and Stability Analysis from the Sorghum Regional Biomass Feedstock Trial. Bioenerg. Res 7(3):1026–1034. https://doi.org/10.1007/s12155-014-9445-5

    Article  CAS  Google Scholar 

  • Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841

    Article  CAS  Google Scholar 

  • Goufo ED, Mugisha S (2018) Complex harmonic poles in the evolution of macromolecules depolymerization. J Comput Anal Appl 18:1490

    Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274

    Article  CAS  Google Scholar 

  • Guimarães CC (2009) Experimentação no ensino de química: caminhos e descaminhos rumo à aprendizagem significativa. Química nova na escola 31(3):198–202

    Google Scholar 

  • Han Y, Xu J, Zhao Z, Zhao J (2018) Analysis of enzymolysis process kinetics and estimation of the resource conversion efficiency to corn cobs with alkali soaking, water and acid steam explosion pretreatments. Bioresour Technol 264:391–394. https://doi.org/10.1016/j.biortech.2018.06.045

    Article  CAS  Google Scholar 

  • Harmoko C, Sucipto KI, Retnoningtyas ES, Hartono SB (2016) Vinyl functionalized cubic mesoporous silica nanoparticles as supporting material to enhance cellulase enzyme stability. ARPN J Eng Appl Sci 11:2981–2992

    CAS  Google Scholar 

  • Hartono CD, Marlie KJ, Putro JN et al (2016) Levulinic acid from corncob by subcritical water process. Int J Ind Chem 7:401–409. https://doi.org/10.1007/s40090-016-0086-8

    Article  CAS  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100(10):2706–2711

    Article  CAS  Google Scholar 

  • Hoang NV et al (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol 3(November):1–15. https://doi.org/10.3389/fbioe.2015.00182

    Article  Google Scholar 

  • Howard RL, Abotsi ELJR, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619

    Article  CAS  Google Scholar 

  • Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol production and utilization. Applied Energy Technology Series. Taylor & Francis, Washington DC, Chapter 10

    Google Scholar 

  • IBÁ, Brazilian Industry of Trees (2018) Sumário executivo 2018. https://iba.org/datafiles/publicacoes/relatorios/digital-sumarioexecutivo-2018.pdf. Accessed 17 Jan 2019

  • IBGE, Geographic Statistical Brazilian Institute (2017) Produção da Extração Vegetal e da Silvicultura 2017. https://agenciadenoticias.ibge.gov.br/media/com_mediaibge/arquivos/15f538e9095614fc3204f828b22fa714.pdf. Accessed 20 Dec 2019

  • IPEF, Institute for Research and Forest Studies (2018) Programa cooperativo sobre produtividade potencial do Pinus no Brasil. https://www.ipef.br/pppib/. Accessed 10 Jan 2019

  • Iroegbu AO, Hlangothi SP (2018) Furfuryl alcohol a versatile, eco-sustainable compound in perspective. Chem Africa. https://doi.org/10.1007/s42250-018-00036-9

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  CAS  Google Scholar 

  • Jung JH et al (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10(9):1067–1076. https://doi.org/10.1111/j.1467-7652.2012.00734.x

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2007) Biorefineries–multi product processes. In: White biotechnology. Springer, Berlin Heidelberg, pp 175–204

    Chapter  Google Scholar 

  • Kamm B (2012) Introduction of biomass and biorefineries. In: The role of green chemistry in biomass processing and conversion. Wiley, Chapter 1, pp 1–26

    Google Scholar 

  • Karapatsia A, Pappas I, Penloglou G et al (2017) Optimization of dilute acid pretreatment and enzymatic hydrolysis of Phalaris aquatica L. lignocellulosic biomass in batch and fed-batch processes. BioEnergy Res 10:225–236. https://doi.org/10.1007/s12155-016-9793-4

    Article  CAS  Google Scholar 

  • Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356

    Article  CAS  Google Scholar 

  • Kenney WA, Sennerby-Forsse L, Layton P (1990) A review of biomass quality research relevant to the use of poplar and willow for energy conversion. Biomass 21(3):163–188

    Article  CAS  Google Scholar 

  • Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38(7):803–807

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Article  Google Scholar 

  • Kole C (2010) Genetics, genomics and breeding of sugarcane. In: Henry RJ, Kole C (eds) , 1st edn. Science Publishers, Enfield, New Hampshire

    Google Scholar 

  • Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13(2):151–172

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Res J 3(1):347–356

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  • Kumar M, Oyedun AO, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sust Energ Rev 81:1742–1770

    Article  Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  CAS  Google Scholar 

  • Loow Y-L, Wu TY, Md Jahim J et al (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520. https://doi.org/10.1007/s10570-016-0936-8

    Article  CAS  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466

    Article  CAS  Google Scholar 

  • Ludueña L, Fasce D, Alvarez VA, Stefani PM (2011) Nanocellulose from rice husk following alkaline treatment to remove silica. Bioresources 6(2):1440–1453

    Google Scholar 

  • Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Technol 48(1):92–99

    Article  CAS  Google Scholar 

  • Macgregor AW, Fincher GB (1993) Carbohydrates of the barley grain. In: Macgregor AW, Bhatty RS (eds) Barley: chemistry and technology. American Association of Cereal Chemists

    Google Scholar 

  • Martino DC, Colodette JL, Chandra R, Saddler J (2017) Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Sci Technol 51:557–569. https://doi.org/10.1007/s00226-016-0889-y

    Article  CAS  Google Scholar 

  • Matsuoka S et al (2014) Energy cane : its concept, development, characteristics, and prospects. Adv Bot 2014. https://doi.org/10.1155/2014/597275

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  Google Scholar 

  • Medina DP, Colorado AA (2006) Ethanol producction of banana shell and cassava starch. Dyna 73(150):21–27

    Google Scholar 

  • Melati RB, Shimizu FL, Oliveira G, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenergy Res 12(1):1–20

    Article  CAS  Google Scholar 

  • Morais RFD, Souza BJD, Leite JM, Soares LHDB, Alves BJR, Boddey RM, Urquiaga S (2009) Elephant grass genotypes for bioenergy production by direct biomass combustion. Pesquisa Agropecuária Brasileira 44(2):133–140

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Müller-Langer F, Kaltschmitt M (2015) Biofuels from lignocellulosic biomass – a multi-criteria approach for comparing overall concepts. Biomass Convers Bioref 5:43–61. https://doi.org/10.1007/s13399-014-0125-7

    Article  CAS  Google Scholar 

  • Nakamura A, Watanabe H, Ishida T, Uchihashi T, Wada M, Ando T et al (2014) Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. J Am Chem Soc 136(12):4584–4592

    Article  CAS  Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97(2):107–116

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzym Microb Technol 18(5):312–331

    Article  CAS  Google Scholar 

  • Paszner L (1988) Salt catalyzed wood bonding with hemicellulose. Holzforschung-International J Biol Chem Phys Technol Wood 42(1):11–20

    Google Scholar 

  • Peng XUE (2009) Growth and biomass of six-year-old Eucalyptus urophylla plantation in Leizhou forestry bureau. Eucalypt Sci Technol 1(9)

    Google Scholar 

  • Pielhop T, Amgarten J, von Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152. https://doi.org/10.1186/s13068-016-0567-1

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50(1):1–39

    Article  Google Scholar 

  • Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73

    Article  CAS  Google Scholar 

  • Quiroz-Castañeda RE, Folch-Mallol JL (2011) Plant cell wall degrading and remodeling proteins: current perspectives. Biotecnol Appl 28:205–215

    Google Scholar 

  • Ramos RLB et al (2001) Sugarcane expressed sequences tags (ESTs) encoding enzymes involved in lignin biosynthesis pathways. Genet Mol Biol 24(1–4):235–241. https://doi.org/10.1590/S1415-47572001000100031

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27

    Article  CAS  Google Scholar 

  • REUTERS (2017) Usinas de cana da Índia devem mais do que dobrar oferta de etanol para mistura à gasoline. https://br.reuters.com/article/businessNews/idBRKBN1EE1L4-OBRBS. Accessed 10 Jan 2019

  • Rocha GJM, Gonçalves AR, Oliveira BR et al (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279. https://doi.org/10.1016/j.indcrop.2011.07.010

    Article  CAS  Google Scholar 

  • Rocha JR d AS d C et al (2017) Bioenergetic potential and genetic diversity of elephant grass via morpho-agronomic and biomass quality traits. Ind\ Crops Prod. Elsevier B.V. 95:485–492. https://doi.org/10.1016/j.indcrop.2016.10.060

    Article  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech 5(4):337–353

    Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  CAS  Google Scholar 

  • Sannigrahi P, Ragauskas AJ (2010) Poplar as a feedstock for biofuels : A review of compositional characteristics. Biofuels Bioprod Bioref 4:209–226. https://doi.org/10.1002/bbb

    Article  CAS  Google Scholar 

  • Santos FA, Queiróz JH, Colodette JG, Fernandes SA, Guimarães VM, Rezende ST (2012) Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova 35(5):1–7

    Article  Google Scholar 

  • Santos FA, Queiroz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas CS, Soares FEF (2013) Otimização do pré-tratamento hidrotérmico da palha de cana-de-açúcar visando à produção de etanol celulósico. Química Nova 37(1):56–62

    Article  Google Scholar 

  • Sant’Anna C, De Souza W, Brienzo M (2014) The influence of the heterogeneity, physicochemical and structural properties on the recalcitrance and conversion of sugarcane bagasse. Sugarcane: Production, Consumption and Agricultural Management Systems, Nova Science Publishers, pp 1–34

    Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  • Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energ Rev 13(1):167–178

    Article  CAS  Google Scholar 

  • Schmitt-Harsh M, Evans TP, Castellanos E, Randolph JC (2012) Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agrofor Syst 86(2):141–157

    Article  Google Scholar 

  • Sharma S, Kuila A, Sharma V (2017) Enzymatic hydrolysis of thermochemically pretreated biomass using a mixture of cellulolytic enzymes produced from different fungal sources. Clean Technol Environ Policy 19:1577–1584. https://doi.org/10.1007/s10098-017-1346-9

    Article  CAS  Google Scholar 

  • Shen H et al (2013) Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol Biofuels 6(71):1–15

    Google Scholar 

  • Silva TAL, Zamora HDZ, Varão LHR et al (2018) Effect of steam explosion pretreatment catalysed by organic acid and alkali on chemical and structural properties and enzymatic hydrolysis of sugarcane bagasse. Waste Biomass Valoriz 9:2191–2201. https://doi.org/10.1007/s12649-017-9989-7

    Article  CAS  Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  CAS  Google Scholar 

  • Solomon BD, Banerjee A, Acevedo A et al (2015) Policies for the sustainable development of biofuels in the Pan American region: a review and synthesis of five countries. Environ Manage 56:1276–1294. https://doi.org/10.1007/s00267-014-0424-6

    Article  Google Scholar 

  • Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Convers Biorefinery 7:247–274. https://doi.org/10.1007/s13399-017-0243-0

    Article  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production : towards affordable cellulosic ethanol. Nat Publish Group 9(6):433–443. https://doi.org/10.1038/nrg2336

    Article  CAS  Google Scholar 

  • Sun S, Cai Y, Liu H (2001) Biomass allocation of Scirpus mariqueter along an elevational gradient in a salt marsh of the Yangtse River estuary. Acta Bot Sin 43(2):178–185

    CAS  Google Scholar 

  • Sun G, Ranson KJ, Kharuk VI (2002) Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia. Remote Sens Environ 79(2–3):279–287

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  • Timell TE (1964) Wood hemicelluloses: part I. In: Advances in carbohydrate chemistry. Academic press, vol 19, pp 247–302

    Google Scholar 

  • UBRABIO, Brazilian Union of Biodiesel and Bioquerosene (2017). https://www.ubrabio.com.br/sites/1800/1891/PDFs/Apresentacoes/20171101FArumAeroespacial2017.pdf. Accessed 9 Jan 2019

  • Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, Steet HF, Darvill AG (2012) 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci 109(35):14253–14258

    Article  CAS  Google Scholar 

  • Wang L, Liu Y, Chen H (2018) A steam-explosion-based hydrolysis and acidification technology for cornstalk bioconversion. BioEnergy Res. https://doi.org/10.1007/s12155-018-9945-9

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Jones S (2004) Top value added chemicals from biomass. In: Results of screening for potential candidates from sugars and synthesis gas, vol 1, pp 26–28

    Google Scholar 

  • Xie G, Peng L (2011) Genetic engineering of energy crops : a strategy for biofuel production in China. J Integ Plant Biol 53(2):143–150. https://doi.org/10.1111/j.1744-7909.2010.01022.x

    Article  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzy Microb Technol 48(1):54–60

    Article  CAS  Google Scholar 

  • Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113(6):1213–1224

    Article  CAS  Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis - which end is up? Curr Opin Plant Biol 11(3):258–265

    Article  CAS  Google Scholar 

  • Yücel Y, Göycıncık S (2015) Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste Biomass Valoriz 6(6):1077–1084

    Article  CAS  Google Scholar 

  • Yung MM (2016) Catalytic conversion of biomass to fuels and chemicals. Top Catal 59(1). https://doi.org/10.1007/s11244-015-0511-9

  • Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Article  CAS  Google Scholar 

  • Zheng Y, Tang Q, Wang T, Liao Y, Wang J (2013) Synthesis of a green fuel additive over cation resins. Chem Eng Technol 36(11):1951–1956

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6(4):465–482

    Article  CAS  Google Scholar 

  • Zhao H et al (2014) Genotypic variation of cell wall composition and its conversion efficiency in Miscanthus sinensis, a potential biomass feedstock crop in China. GCB Bioenergy 6:768–776. https://doi.org/10.1111/gcbb.12115

    Article  CAS  Google Scholar 

  • Zhao X, Li S, Wu R, Liu D (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Bioref 12(5):834–845

    Google Scholar 

  • Zhu S, Wu Y, Yu Z, Zhang X, Wang C, Yu F, Xue Y (2005) Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosyst Eng 92(2):229–235

    Article  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are thankful for the support of the Brazilian Council for Research and Development (CNPq, process 401900/2016-9) and São Paulo Research Foundation (FAPESP, process 2017/11345-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Brienzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, F.L., Zamora, H.D.Z., Schmatz, A.A., Melati, R.B., Bueno, D., Brienzo, M. (2020). Biofuels Generation Based on Technical Process and Biomass Quality. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V. (eds) Biofuel Production Technologies: Critical Analysis for Sustainability . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-8637-4_2

Download citation

Publish with us

Policies and ethics