Skip to main content

Nonlinear Contextual Face Hallucination

  • Conference paper
  • First Online:
Book cover Digital TV and Multimedia Communication (IFTC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1009))

Abstract

Face hallucination, which refers to the restoration of single or multiple low-resolution face images into clear high-resolution one, is a challenging research issue. Most existing methods use local or global patches for image representation and achieve good performance. However, they ignore that the local patch limits the area of the receptive field and the priori information used in reconstruction is limited. And the global patch expands the receptive field but introduces irrelevant information to degrade the reconstruction performance. In order to improve the performance of reconstruction, we propose a nonlinear contextual face hallucination method. First, contextual information can effectively improve the receptive field area to make full use of priori information. Then, the nonlinear model can make the proposed model more suitable for practical application and make the correlation of data in kernel space more compact. Finally, combining contextual and residual learning can improve the stability of the solution of the super-resolution model and the accuracy of reconstruction performance. The experimental results show that the proposed face hallucination method has superior performance than the state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  2. Ma, X., Zhang, J., Qi, C.: Position-based face hallucination method. In: IEEE International Conference on Multimedia and Expo, pp. 290–293 (2009)

    Google Scholar 

  3. Ma, X., Zhang, J., Chun, Q.: Hallucinating face by position-patch. Pattern Recogn. 43(6), 2224–2236 (2010)

    Article  Google Scholar 

  4. Jung, C., Jiao, L., Liu, B., Gong, M.: Position-patch based face hallucination using convex optimization. IEEE Signal Process. Lett. 18(6), 367–370 (2011)

    Article  Google Scholar 

  5. Wang, Z., Hu, R., Wang, S., Jiang, J.: Face hallucination via weighted adaptive sparse regularization. IEEE Trans. Circuits Syst. Video Technol. 24(5), 802–813 (2014)

    Article  Google Scholar 

  6. Jiang, J., Hu, R., Han, Z., Lu, T., Huang, K.: Position-patch based face hallucination via locality-constrained representation. In: IEEE International Conference on Multimedia and Expo, pp. 212–217 (2012)

    Google Scholar 

  7. Jiang, J., Hu, R., Han, Z., Wang, Z., Lu, T., Chen, J.: Locality-constraint iterative neighbor embedding for face hallucination. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2013)

    Google Scholar 

  8. Gao, G., Jing, X.Y., Huang, P., Zhou, Q., Wu, S., Yue, D.: Locality-constrained double low-rank representation for effective face hallucination. IEEE Access 4(99), 8775–8786 (2016)

    Article  Google Scholar 

  9. Lu, T., Xiong, Z., Zhang, Y., Wang, B., Lu, T.: Robust face super-resolution via locality-constrained low-rank representation. IEEE Access 5(99), 13103–13117 (2017)

    Article  Google Scholar 

  10. Jiang, J., Ma, J., Wang, Z., Wang, Z., Hu, R.: SRLSP: a face image super-resolution algorithm using smooth regression with local structure prior. IEEE Trans. Multimed. 19(1), 27–40 (2017)

    Article  Google Scholar 

  11. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: International Conference on Neural Information Processing Systems, pp. 2223–2231 (2009)

    Google Scholar 

  12. Yang, W., Yuan, T., Zhou, F., Liao, Q.: Face hallucination via position-based dictionaries coding in kernel feature space. In: 2014 International Conference on Smart Computing, pp. 131–135, November 2014

    Google Scholar 

  13. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, p. I (2004)

    Google Scholar 

  14. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  15. Zhang, Y., Zhang, Y., Zhang, J., Dai, Q.: CCR: clustering and collaborative representation for fast single image super-resolution. IEEE Trans. Multimed. 18(3), 405–417 (2016)

    Article  Google Scholar 

  16. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  17. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  18. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 1874–1883 (2016)

    Google Scholar 

  19. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 105–114 (2017)

    Google Scholar 

  20. Romano, Y., Elad, M.: Con-patch: when a patch meets its context. IEEE Trans. Image Process. 25(9), 3967–3978 (2016)

    Article  MathSciNet  Google Scholar 

  21. Jiang, J., Yu, Y., Tang, S., Ma, J., Qi, G.J., Aizawa, A.: Context-patch based face hallucination via thresholding locality-constrained representation and reproducing learning. In: IEEE International Conference on Multimedia and Expo, pp. 469–474 (2017)

    Google Scholar 

  22. Li, H., Lam, K.M.: Fast super-resolution based on weighted collaborative representation. In: International Conference on Digital Signal Processing, pp. 914–918 (2014)

    Google Scholar 

  23. Timofte, R., Gool, L.V.: Adaptive and weighted collaborative representations for image classification. Pattern Recogn. Lett. 43(1), 127–135 (2014)

    Article  Google Scholar 

  24. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  25. Timofte, R., De, V., Gool, L.V.: Anchored neighborhood regression for fast example-based super-resolution. In: IEEE International Conference on Computer Vision, pp. 1920–1927 (2013)

    Google Scholar 

  26. Williams, C.K.I.: Learning with kernels: support vector machines, regularization, optimization, and beyond. Am. Stat. Assoc. 98(462), 489–489 (2002)

    Google Scholar 

  27. Saitoh, S.: Theory of reproducing kernels. In: Begehr, H.G.W., Gilbert, R.P., Wong, M.W. (eds.) Analysis and Applications — ISAAC 2001. ISAA, vol. 10, pp. 135–150. Springer, Boston (2003). https://doi.org/10.1007/978-1-4757-3741-7_10

    Chapter  Google Scholar 

  28. Gao, W., et al.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(1), 149–161 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61502354, 61501413, 61671332, 41501505), the Natural Science Foundation of Hubei Province of China (2015CFB451, 2014CFA130, 2012FFA099, 2012FFA134, 2013CF125), the Central Government Guided Local Science and Technology Development Projects (2018ZYYD059), Provincial Teaching Research Project of Hubei Province Higher Education (2017324), Wuhan Institute of Technology Key Teaching Project (Z2017009), Scientific Research Foundation of Wuhan Institute of Technology (K201713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, K., Lu, T., Jiang, J., Wang, Z. (2019). Nonlinear Contextual Face Hallucination. In: Zhai, G., Zhou, J., An, P., Yang, X. (eds) Digital TV and Multimedia Communication. IFTC 2018. Communications in Computer and Information Science, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-13-8138-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8138-6_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8137-9

  • Online ISBN: 978-981-13-8138-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics