Skip to main content

Antioxidant Activities of Viviparus Contectus Extract Against Tert-Butylhydroperoxide-Induced Oxidative Stress

  • Conference paper
  • First Online:
Taurine 11

Abstract

In this study, the antioxidant properties of Viviparus contectus (V. contectus) extract were evaluated for various radical scavenging activities, ferric reducing antioxidant power (FRAP), ABTS radical scavenging activity and oxygen radical absorbance capacity (ORAC). In addition, inhibition effect of the V. contectus extract against DNA scission induced by hydroxyl radical was measured. We also studied the protective effect of V. contectus extract against oxidative damage through measurements of intracellular reactive oxygen species (ROS) in Chang cells and zebrafish embryo. We found that V. contectus extract contains strong radical scavenging activities and antioxidant properties, which prevent tert-butylhydroperoxide (t-BHP)-induced oxidative stress, enhance cell viability, reduce ROS production, inhibit oxidative damage and improve mitochondrial function in Chang cells. Also, we determined that the V. contectus extract reduced ROS production mediated by t-BHP induced oxidative stress on zebrafish embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambigaipalan P, Shahidi F (2015) Antioxidant potential of date (Phoenix dactylifera L.) seed protein hydrolysates and carnosine in food and biological systems. J Agric Food Chem 63:864–871

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Cao M, Yao X (2005) Study on extraction technology of taurine from Cipangopaludina chinensis. J Yang Univ 2:84–87

    Google Scholar 

  • Chen J, Lindmark-Mansson H, Gorton L, Akesson B (2003) Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int Dairy J 13:927–935

    Article  CAS  Google Scholar 

  • Chiu YW, Chen HC, Lee SC, Chen CA (2002) Morphometric analysis of shell and operculum variations in the viviparid snail, Cipangopaludina chinensis (Mollusca: Gastropoda), in Taiwan. Zool Stud 41(3):321–331

    Google Scholar 

  • Cui R, Zhao C (1989) Preliminary study on the pharmacological functions of polysaccharides from three mollusca species. J Yunnan Univ 3:172–174

    Google Scholar 

  • Flohé L (1988) Glutathione peroxidase. Basic Life Sci 49:663–668

    PubMed  Google Scholar 

  • Fu JF, Zhang RB (2010) Study on inhibitive effect of polysaccharide from Cipangopaludina chinensis gray on Hela cells in vitro. Chin J Prim Med Pharm 22:3057–3058

    Google Scholar 

  • Gülçin İ (2010) Antioxidant properties of resveratrol: a structure–activity insight. Innov Food Sci Emerg Technol 11:210–218

    Article  Google Scholar 

  • Guo H, Saravanakumar K, Wang MH (2018) Total phenolic, flavonoid contents and free radical scavenging capacity of extracts from tubers of Stachys affinis. Bio-catal Agric Biotechnol 15:235–239

    Article  Google Scholar 

  • Hussein MA (2011) A convenient mechanism for the free radical scavenging activity of resveratrol. Inter J Phytomed 3:459–469

    CAS  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S36

    Article  CAS  Google Scholar 

  • Jiang C, Jiao Y, Chen X, Li X, Yan W, Yu B, Xiong Q (2013) Preliminary characterization and potential hepatoprotective effect of polysaccharides from Cipangopaludina chinensis. Food Chem Toxicol 59:18–25

    Article  CAS  Google Scholar 

  • Kašparova S, Brezová V, Valko M, Horecký J, Mlynárik V, Liptaj T, Vančová O, Uličná O, Dobrota D (2005) Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int 46:601–611

    Article  Google Scholar 

  • Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33:1353–1358

    Article  CAS  Google Scholar 

  • Kim YS, Lee SJ, Hwang JW, Kim EK, Kim SE, Kim EH, Moon SH, Jeon BT, Park PJ (2012) In vitro protective effects of Thymus quinquecostatus Celak extracts on t-BHP-induced cell damage through antioxidant activity. Food Chem Toxicol 50:4191–4198

    Article  CAS  Google Scholar 

  • Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274:13908–13914

    Article  CAS  Google Scholar 

  • Lu HF, Du LN, Li ZQ, Chen XY, Yang JX (2014) Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae). Zool Res 35(6):510–527

    PubMed  PubMed Central  Google Scholar 

  • Meng D, Zhang P, Zhang L, Wang H, Ho CT, Li S, Shahidi F, Zhao H (2017) Detection of cellular redox reactions and antioxidant activity assays. J Funct Foods 37:467–479

    Article  CAS  Google Scholar 

  • Miller DD (1996) Food chemistry. Marcel Deckker, New York, pp 618–649

    Google Scholar 

  • Ou B, Huang D, Hampsch WM, Flanagan JA, Deemer EK (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Patlevič P, Vašková Z, Švorc PJ, Vaško L, Švorc P (2016) Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr Med Res 5:250–258

    Article  Google Scholar 

  • Rival SG, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrosylates 2. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49:295–302

    Article  CAS  Google Scholar 

  • Tachakittirungrod S, Okonogi S, Chowwanapoonpohn S (2007) Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leaf extract. Food Chem 103:381–388

    Article  CAS  Google Scholar 

  • Toshniwal PK, Zarling EJ (1992) Evidence for increased lipid peroxidation in multiple sclerosis. Neurochem Res 17:205–207

    Article  CAS  Google Scholar 

  • Wang L, Ding L, Yu Z, Zhang T, Ma S, Liu J (2016) Intracellular ROS scavenging and antioxidant enzyme regulating capacities of corn gluten meal-derived antioxidant peptides in HepG2 cells. Food Res Int 90:33–41

    Article  CAS  Google Scholar 

  • Wijeratne SS, Cuppett SL, Schlegel V (2005) Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. J Agric Food Chem 53(22):8768–8774

    Article  CAS  Google Scholar 

  • Wu JQ, Kosten TR, Zhang XY (2013) Free radicals, antioxidant defense system, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 46:200–206

    Article  CAS  Google Scholar 

  • Ye ZW, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850(8):1607–1621

    Article  CAS  Google Scholar 

  • Zhong Y, Shahidi F (2012) Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chem 131(1):22–30

    Article  CAS  Google Scholar 

  • Zhou D, Shao L, Spitz DR (2014) Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res 122:1–67

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyo-Jam Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, YS. et al. (2019). Antioxidant Activities of Viviparus Contectus Extract Against Tert-Butylhydroperoxide-Induced Oxidative Stress. In: Hu, J., Piao, F., Schaffer, S., El Idrissi, A., Wu, JY. (eds) Taurine 11. Advances in Experimental Medicine and Biology, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-13-8023-5_55

Download citation

Publish with us

Policies and ethics