Skip to main content

Dynamic Detection and Tracking Based on Human Body Component Modeling

  • Conference paper
  • First Online:
  • 984 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1005))

Abstract

Focus on the problem of dynamic human detection and tracking in complex scenes, a physical structure based Convolutional Nerual Network is proposed. Firstly, aiming at the modeling and analysis of the human body and its components, the human body detection algorithm adapted to complex scenes is proposed, and the convolutional neural network is designed to realize the model. Secondly, the human body tracking model based on convolutional neural network and off-line training is designed, and the human body tracking algorithm is optimized to realize fast and accurate tracking of human body. Using IOU, Euclidean distance and other algorithms, the relationship between the targets detected by the detection algorithms in two adjacent frames is established. Multi-modal fusion of multiple models using a state machine or the like, so that multiple models can work effectively at the same time. This experiment carried out simulation experiments on the bus video dataset. The experimental results show that the algorithm can effectively track the passengers who are obscured by each other on the bus, and the accuracy exceeds the current best algorithms, which proves the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  2. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  3. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  4. Lin, T.Y., Dollár, P., Girshick, R.B., et al.: Feature pyramid networks for object detection. CVPR 1(2), 4 (2017)

    Google Scholar 

  5. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  6. Fu, C.Y., Liu, W., Ranga, A., et al.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  7. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K.I., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Hare, S., Golodetz, S., Saffari, A., et al.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)

    Article  Google Scholar 

  10. Henriques, J.F., Caseiro, R., Martins, P., et al.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  11. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 983–990. IEEE (2009)

    Google Scholar 

  12. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)

    Google Scholar 

  13. Nam, H., Baek, M., Han, B.: Modeling and propagating CNNs in a tree structure for visual tracking. arXiv preprint arXiv:1608.07242 (2016)

  14. Danelljan, M., Bhat, G., Khan, F.S., et al.: ECO: efficient convolution operators for tracking. CVPR 1(2), 3 (2017)

    Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  16. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)

    Google Scholar 

  17. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

  18. Vojir, T., Noskova, J., Matas, J.: Robust scale-adaptive mean-shift for tracking. Pattern Recogn. Lett. 49, 250–258 (2014)

    Article  Google Scholar 

  19. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)

    Google Scholar 

  20. Cao, Z., Simon, T., Wei, S.E., et al.: Realtime multi-person 2D pose estimation using part affinity fields. arXiv preprint arXiv:1611.08050 (2016)

  21. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45

    Chapter  Google Scholar 

  22. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  25. Dollár, P., Wojek, C., Schiele, B., et al.: Pedestrian detection: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 304–311. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, J., Wang, Z. (2019). Dynamic Detection and Tracking Based on Human Body Component Modeling. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2018. Communications in Computer and Information Science, vol 1005. Springer, Singapore. https://doi.org/10.1007/978-981-13-7983-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7983-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7982-6

  • Online ISBN: 978-981-13-7983-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics