Skip to main content

Survey of Pedestrian Action Recognition in Unmanned-Driving

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1005))

Included in the following conference series:

Abstract

With the development of unmanned-driving car technology, there are higher requirements for the intelligence, safety and stability of intelligent vehicle driving. Especially in a complex and uncertain environment, the driverless car can accurately detect the pedestrian action, which can effectively realize the autonomous driving of the vehicle. This requires that vehicles detect pedestrians firstly, then identify pedestrian body language and try to understand their intentions, predict pedestrian’s actions, which form a good interaction cognition between human and vehicle. In this paper, we give a detailed survey about the recent and state-of-the-art research methods in the filed of human action recognition and discuss their advantages and limitations. We analysis the main framework of motion recognition, and summarize the common datasets of this filed. Finally, suggestions for future research directions are offered, which is expected to benefit the follow research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. (CSUR) 43(3), 16 (2011)

    Article  Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, pp. 886–893 (2005)

    Google Scholar 

  3. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–295 (1995)

    MATH  Google Scholar 

  4. Singh, D., Khan, M.A., Bansal, A., et al.: An application of SVM in character recognition with chain code. In: Communication, Control and Intelligent Systems (CCIS), pp. 167–171. IEEE (2015)

    Google Scholar 

  5. Ahmad, A.S., Hassan, M.Y., Abdullah, M.P., et al.: A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 33(1), 102–109 (2014)

    Article  Google Scholar 

  6. Liu, H., Xu, T., Wang, X., Qian, Y.: Related HOG features for human detection using cascaded adaboost and SVM classifiers. In: Li, S., et al. (eds.) MMM 2013. LNCS, vol. 7733, pp. 345–355. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35728-2_33

    Chapter  Google Scholar 

  7. Pang, Y., Yuan, Y., Li, X., et al.: Efficient HOG human detection. Sig. Process. 91(4), 773–781 (2011)

    Article  Google Scholar 

  8. Han, F., Shan, Y., Cekander, R., et al.: A two-stage approach to people and vehicle detection with hog-based SVM. In: Performance Metrics for Intelligent Systems 2006 Workshop, pp. 133–140 (2006)

    Google Scholar 

  9. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  10. Yan, J., Zhang, X., Lei, Z., et al.: Robust multi-resolution pedestrian detection in traffic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3033–3040 (2013)

    Google Scholar 

  11. Zeng, J.X., Chen, X.: Pedestrian detection combined with single and couple pedestrian DPM models in traffic scene. Acta Electronica Sinica (2016)

    Google Scholar 

  12. Yan, J., Lei, Z., Wen, L., et al.: The fastest deformable part model for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2497–2504 (2014)

    Google Scholar 

  13. Tian, Y., Sukthankar, R., Shah, M.: Spatiotemporal deformable part models for action detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2642–2649 (2013)

    Google Scholar 

  14. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vision 63(2), 153–161 (2005)

    Article  Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  16. Girshick, R.: Fast-RCNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  17. Uijlings, J.R.R., Sande, K.E.A., Gever, T., et al.: Selective search for object recognition. Int. J. Comput. Vision 104(2), 154–171 (2013)

    Article  Google Scholar 

  18. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  19. Ye et al.: Night pedestrian detection based on accelerated region convolutional neural network. Progress Laser Optoelectron. 54(08), 123–129 (2017)

    Google Scholar 

  20. Li, J., Liang, X., Shen, S.M., et al.: Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimedia 20(4), 985–996 (2018)

    Google Scholar 

  21. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_28

    Chapter  Google Scholar 

  22. Guo, A.I., Yin, B.Q., et al.: Small-scale pedestrian detection based on deep convolutional neural network. Inf. Technol. Netw. Secur. 37(07), 50–53+57 (2018)

    Google Scholar 

  23. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  24. Gao, Z., Li, S., Chen, J., Li, Z.: Pedestrian detection method based on YOLO network. Comput. Eng. 44(5), 215–219, 226 (2018)

    Google Scholar 

  25. Hao, X.Z., Chai, Z.Y.: An improved deep residual network pedestrian detection method. Comput. Appl. Res. (06), 1–3 (2019)

    Google Scholar 

  26. Zhu, P., Huang, L.: Pedestrian detection based on deep neural network in traffic environment. Inf. Commun. (05), 69–72 (2018)

    Google Scholar 

  27. Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)

    Article  Google Scholar 

  28. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  29. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (1981)

    Google Scholar 

  30. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  31. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  32. Weinzaepfel, P., Revaud, J., Harchaoui, Z., et al.: DeepFlow: large displacement optical flow with deep matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1385–1392 (2013)

    Google Scholar 

  33. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vision 93(3), 368–388 (2011)

    Article  MathSciNet  Google Scholar 

  34. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)

    Article  Google Scholar 

  35. Mozerov, M.G.: Constrained optical flow estimation as a matching problem. IEEE Trans. Image Process. 22(5), 2044–2055 (2013)

    Article  MathSciNet  Google Scholar 

  36. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  37. Peng, X., Zou, C., Qiao, Yu., Peng, Q.: Action recognition with stacked fisher vectors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 581–595. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_38

    Chapter  Google Scholar 

  38. Chaudhry, R., Ravichandran, A., Hager, G., et al.: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1932–1939. IEEE (2009)

    Google Scholar 

  39. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  40. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II. IEEE 2004

    Google Scholar 

  41. Laptev, I., Marszalek, M., Schmid, C., et al.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  43. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. Comput. Sci. (2015)

    Google Scholar 

  44. Zha, S., Luisier, F., Andrews, W., et al.: Exploiting image-trained CNN architectures for unconstrained video classification. Comput. Sci. (2015)

    Google Scholar 

  45. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  46. Lin, T.Y., Roychowdhury, A., Maji, S.: Bilinear CNNs for fine-grained visual recognition, pp. 1449–1457 (2015)

    Google Scholar 

  47. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks, pp. 2017–2025 (2015)

    Google Scholar 

  48. Cao, J., Jiang, X., Sun, W.: Video human motion recognition algorithm based on CNN features of training diagram. Comput. Eng. 43(11), 234–238 (2017)

    Google Scholar 

  49. Derpanis, K.G., Sizintsev, M., Cannons, K.J., et al.: Action spotting and recognition based on a spatiotemporal orientation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 527–540 (2013)

    Article  Google Scholar 

  50. Goudelis, G., Karpouzis, K., Kollias, S.: Exploring trace transform for robust human action recognition. Pattern Recogn. 46(12), 3238–3248 (2013)

    Article  Google Scholar 

  51. Blank, M., Gorelick, L., Shechtman, E., et al.: Actions as space-time shapes, pp. 1395–1402. IEEE (2005)

    Google Scholar 

  52. Vishwakarma, D.K., Singh, K.: Human activity recognition based on spatial distribution of gradients at sublevels of average energy silhouette images. IEEE Trans. Cogn. Dev. Syst. 9(4), 316–327 (2017)

    Article  Google Scholar 

  53. Melfi, R., Kondra, S., Petrosino, A.: Human activity modeling by spatio temporal textural appearance. Pattern Recogn. Lett. 34(15), 1990–1994 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

We really thank anonymous reviewer’s constructive suggestions. This part of study is partially founded by the national natural science foundation of China with the numbers 61871038 and 61672178, Beijing Natural Science Foundation with the numbers 4182022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Ma, N., Wang, P., Pang, G., Shi, X. (2019). Survey of Pedestrian Action Recognition in Unmanned-Driving. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2018. Communications in Computer and Information Science, vol 1005. Springer, Singapore. https://doi.org/10.1007/978-981-13-7983-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7983-3_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7982-6

  • Online ISBN: 978-981-13-7983-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics