Skip to main content

Microbes Biology: Microbes in Wetland and Bioprospection of Microbes

  • Chapter
  • First Online:
Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment

Abstract

Over-increasing population, climate change, and the environmental pollutants are exerting negative pressure on biodiversity as well as our natural resources. Wetlands are a crucial gear of our natural environment. They support not only biological diversity but also the microbial communities of such systems that play an important role in biogeochemical cycles, global greenhouse gas emission, and nutrient (re)cycling. Therefore, wetlands are ecologically as well as economically indispensable systems owing to their high yield. The highly productive and diverse microbial community inhabitant of wetland ecosystems continuously transforms nutrients from dead vegetation into sources of nitrogen, phosphorous, and other nutrients that can be used by the plants, and in turn the plant-root exudates serve as a food source for the microbes. Unfortunately, the composition and diversity of microorganisms in such type of ecosystems are poorly explored. Hence, the analysis of microbial biodiversity and their correct prospecting from these ecosystems will help in isolating and identifying new and potential microorganisms having high specificity for various applications. This chapter consists of literature on the diversity of predominant microbes such as bacteria, fungi, and actinomycetes from wetland ecosystems and on the underlying mechanisms that structure microbial communities in wetland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MS, Jia Z (2012) Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil. Front Microbiol 3:246. https://doi.org/10.3389/fmicb.2012.00246

    Article  CAS  Google Scholar 

  • Balser T, McMahon K, Bart D, Bronson D, Coyle DR, Craig N, Flores-Mangual M, Forshay K, Jones S, Kent A, Shade A (2006) Bridging the gap between micro- and macro-scale perspectives on the role of microbial communities in global change ecology. Plant Soil 289:59–70

    Article  CAS  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81(2):169–193

    Article  Google Scholar 

  • Benoit LK, Askins RA (1999) Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19(1):194–208

    Article  Google Scholar 

  • Bodelier P, Dedysh SN (2013a) Microbiology of wetlands. Front Microbiol 4:79

    Article  Google Scholar 

  • Bodelier PE, Dedysh SN (2013b) Microbiology of wetlands. Front Microbiol 3:79

    Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT (2005) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Bridgham SD, Ping CL, Richardson JL, Updegraff K (2000) Soils of northern peatlands: Histosols and Gelisols. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton, pp 343–370

    Google Scholar 

  • Carter V (1996) Wetland hydrology, water quality, and associated functions. In: National water summary on wetland resources, pp 35–48

    Google Scholar 

  • Casey RE, Klaine SJ (2001) Nutrient attenuation by a riparian wetland during natural and artificial runoff events. J Environ Qual 30:720–1731

    Google Scholar 

  • Chen H, Zhang W, Gao H, Nie N (2018) Climate change and anthropogenic impacts on wetland and agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sens 10:356

    Article  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Conrad R, Klose M, Lu Y, Chidthaisong A (2012) Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw. Front Microbiol 3:4. https://doi.org/10.3389/fmicb.2012.00004

    Article  CAS  Google Scholar 

  • Dedysh SN (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2:184

    Article  Google Scholar 

  • Deng Y, Cui X, Hernández M, Dumont MG (2014) Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing. PLoS ONE 9(7):e103115. https://doi.org/10.1371/journal.pone.0103115

    Article  CAS  Google Scholar 

  • Dhir B (2013) Aquatic plant species and removal of contaminants. In: Phytoremediation: role of aquatic plants in environmental clean-up. Springer, India, pp 21–50

    Chapter  Google Scholar 

  • Ding X, Peng XJ, Jin BS, Xiao M, Chen JK, Li B, Fang CM, Nie M (2015) Spatial distribution of bacterial communities driven by multiple environmental factors in a beach wetland of the largest freshwater lake in China. Front Microbiol 6:129

    Google Scholar 

  • Dorador C, Vila I, Witzel KP, Imhoff JF (2013) Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam Appl Limnol Arc Hydrobiol 182(2):135–159

    Article  CAS  Google Scholar 

  • Federal Register (1980) 40 CFR part 230: section 404(b) (1) guidelines for specification of disposal sites for dredged or fill material, vol 45. U.S. Government Printing Office, Washington, DC, pp 85,352–85,353

    Google Scholar 

  • Federal Register (1982) Title 33: navigation and navigable waters; regulatory programs of the corps of engineers, vol 47. U.S. Government Printing Office, Washington, DC, p 31,810

    Google Scholar 

  • Gayathri S, Saravanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast-growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. Indian J Biotechnol 9:397–402

    Google Scholar 

  • Halpern BS et al (2008) A global map of human impacts on marine ecosystems. Science 319:948–952

    Article  CAS  Google Scholar 

  • He S, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, Tremblay J, Glavina del Rio T, Waldrop MP, Windham-Myers L, Tringe SG (2015) Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio 6:e00066–e00015

    CAS  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecol 35(1):1–21

    Article  CAS  Google Scholar 

  • Irvine IC, Vivanco L, Bentley PN, Martiny JBH (2012) The effect of nitrogen enrichment on c (1)-cycling microorganisms and methane flux in salt marsh sediments. Front Microbiol 3:90

    Article  CAS  Google Scholar 

  • Kolb S, Horn MA (2012) Microbial CH(4) and N(2)O consumption in acidic wetlands. Front Microbiol 3:78

    Article  CAS  Google Scholar 

  • Lamers LP, Van Diggelen JM, Op Den Camp HJ, Visser EJ, Lucassen EC, Vile MA, Jetten MS, Smolders AJ, Roelofs JG (2012a) Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 3:156

    Article  CAS  Google Scholar 

  • Lamers LPM, Van Diggelen JMH, Op Den Camp HJM, Visser EJW, Lucassen ECHET, Vile MA (2012b) Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 3:156

    Article  CAS  Google Scholar 

  • Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: variation in time and space. Can J Bot 73(S1):1391–1398

    Article  Google Scholar 

  • Lovell CR, Davis DA (2012) Specificity of salt marsh diazotrophs for vegetation zone sand plant hosts: results from a North American marsh. Front Microbiol 3:84

    Article  Google Scholar 

  • MEA (2005). A report of the millennium ecosystem assessment: ecosystems and human well-being. The Millennium Ecosystem Assessment series. Island Press, USA. ISBN 1-59726-040-1

    Google Scholar 

  • Padhi S, Swain PK, Behura SK, Baidya S, Behera SK, Panigrahy MR (2011) Cultivation of Gracilaria verrucosa (Huds) Papenfuss in Chilika Lake for livelihood generation in coastal areas of Orissa State. J Appl Phycol 23(2):151–155

    Article  Google Scholar 

  • Pester M, Knorr K-H, Friedrich MW, Wagner M, Loy A (2012) Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Front Microbiol 3:72. https://doi.org/10.3389/fmicb.2012.00072

    Article  CAS  Google Scholar 

  • Preston MD, Smemo KA, McLaughlin JW, Basilico N (2012) Peatland microbial communities and decomposition processes in the James Bay lowlands, Canada. Front Microbiol 3:70. https://doi.org/10.3389/fmicb.2012.00070

  • Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L, Tuittila ES (2012) Water dispersal of methanotrophic bacteria maintains functional methane oxidation in sphagnum mosses. Front Microbiol 3:15

    Article  CAS  Google Scholar 

  • Rai UN, Upadhyay AK, Singh NK, Dwivedi S, Tripathi RD (2015) Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecol Eng 81:115–122

    Article  Google Scholar 

  • Raina V, Panda AN, Mishra SR, Nayak T, Suar M (2018) Microbial biodiversity study of a brackish water ecosystem in eastern India: the Chilika Lake. In: Microbial diversity in the genomic era. Academic Press, pp 677–699. https://doi.org/10.1016/B978-0-12-814849-5.00004-6. ISBN NO.978-0-12-814849-5

    Chapter  Google Scholar 

  • Reeburgh WS (2003) Global methane biogeochemistry. In: Keeling RF, Holland HD, Turekian KK (eds) Treatise on geochemistry, the atmosphere. Elsevier-Pergamon, Oxford, pp 65–89

    Google Scholar 

  • Reyes-Sosa MB, Apodaca-Hernández JE, Arena-Ortiz ML (2018) Bioprospecting for microbes with potential hydrocarbon remediation activity on the northwest coast of the Yucatan Peninsula, Mexico, using DNA sequencing. Sci Total Environ 642:1060–1074

    Article  CAS  Google Scholar 

  • Richey JE et al (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416(6881):617

    Article  CAS  Google Scholar 

  • Roe JH, Georges A (2007) Heterogeneous wetland complexes, buffer zones, and travel corridors: landscape management for freshwater reptiles. Biol Conserv 135(1):67–76

    Article  Google Scholar 

  • Serkebaeva YM, Kim Y, Liesack W, Dedysh SN (2013) Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS One 8(5):e63994

    Article  Google Scholar 

  • Siljanen HMP, Saari A, Bodrossy L, Martikainen PJ (2012) Effects of nitrogen load on the function and diversity of methanotrophs in the littoral wetland of a boreal lake. Front Microbiol 3:39

    Article  CAS  Google Scholar 

  • Singh R, Upadhyay AK, Chandra P, Singh DP (2018) Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour Technol 270:489–497

    Article  CAS  Google Scholar 

  • Stoeva MK, Aris-Brosou S, Chételat J, Hintelmann H, Pelletier P, Poulain AJ (2014) Microbial community structure in lake and wetland sediments from a high arctic polar desert revealed by targeted transcriptomics. PLoS One 9:89531

    Article  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  Google Scholar 

  • Sun CL, Brauer SL, Cadillo-Quiroz H, Zinder SH, Yavitt JB (2012) Seasonal changes in methanogenesis and methanogenic community in three peat lands, New York state. Front Microbiol 3:81

    Article  CAS  Google Scholar 

  • Truu M, Juhanson J, Truu J (2009) Microbial biomass, activity and community composition in constructed wetlands. Sci Total Environ 407(13):3958–3971

    Article  CAS  Google Scholar 

  • Upadhyay AK, Bankoti NS, Rai UN (2016) Studies on sustainability of simulated constructed wetland system for treatment of urban waste: design and operation. J Environ Manag 169:285–292

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh NK, Bankoti NS, Rai UN (2017) Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environ Technol 38:2691–2699

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh R, Singh DP (2019) Phycotechnological approaches toward wastewater management. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 423–435

    Google Scholar 

  • Vymazal J (2013) Emergent plants used in free water surface constructed wetlands: a review. Ecol Eng 61:501e504

    Google Scholar 

  • Waycott M et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    Article  CAS  Google Scholar 

  • Yun J, Ju Y, Deng Y, Zhang H (2014) Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microbial Ecol 68(2):360–369

    Article  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Article  Google Scholar 

Download references

Acknowledgments

Prashant Kumar Singh is thankful to the Agriculture Research Organisation (ARO), Israel, for a postdoctoral fellowship. Alok Kumar Shrivastava is grateful to the Department of Science and Technology (DST)-Science and Engineering Research Board (SERB) for young scientist award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Singh, P.K., Wang, W., Shrivastava, A.K. (2020). Microbes Biology: Microbes in Wetland and Bioprospection of Microbes. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_7

Download citation

Publish with us

Policies and ethics