Skip to main content

Actin Polymerization: A Cellular Perspective for Motility

  • Chapter
  • First Online:
Actin Polymerization in Apicomplexan

Abstract

The first chapter introduces the importance of actin and its polymerization dynamics in general. It briefs about the major cellular processes that are controlled by the virtue of controlled regulation of actin polymerization process. It also summarizes different pathophysiological conditions arising due to impaired regulation of actin. Further, we also discuss the importance of acting polymerization in motility in different prokaryotic and eukaryotic cellular organisms. Finally, we conclude by introducing the phenomenon of gliding motility in apicomplexans, where actin which is the central player is tightly controlled by a minimal set of regulatory proteins. This is quite unlike higher eukaryotes where the number of similar actin-binding accessory proteins is fairly high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57(1):109–125. https://doi.org/10.1146/annurev.arplant.57.032905.105206

    Article  CAS  PubMed  Google Scholar 

  2. Itoh G, Yumura S (2007) A novel mitosis-specific dynamic actin structure in Dictyostelium cells. J Cell Sci 120(24):4302–4309. https://doi.org/10.1242/jcs.015875

    Article  CAS  PubMed  Google Scholar 

  3. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596. https://doi.org/10.1038/nature04396

    Article  CAS  PubMed  Google Scholar 

  4. Puppo A, Chun JT, Gragnaniello G, Garante E, Santella L et al (2008) PLoS One 3(10). https://doi.org/10.1371/journal.pone.0003588

  5. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, Mol Cell Res 1773(5):642–652. https://doi.org/10.1016/j.bbamcr.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Stournaras C, Stiakaki E, Koukouritaki SB et al (1996) Altered actin polymerization dynamics in various malignant cell types: evidence for differential sensitivity to cytochalasin B. Biochem Pharmacol 52(9):1339–1346. https://doi.org/10.1016/S0006-2952(96)00389-9

    Article  CAS  PubMed  Google Scholar 

  7. Moulding DA, Record J, Malinova D, Thrasher AJ (2013) Actin cytoskeletal defects in immunodeficiency. Immunol Rev 256(1):282–299. https://doi.org/10.1111/imr.12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramaekers FCS, Bosman FT (2004) The cytoskeleton and disease. J Pathol 204(4):351–354. https://doi.org/10.1002/path.1665

    Article  CAS  PubMed  Google Scholar 

  9. Condeelis J, Singer RH, Segall JE (2005) The great escape : when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol:695–718. https://doi.org/10.1146/annurev.cellbio.21.122303.120306

  10. Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15(1):87–96. https://doi.org/10.1016/j.gde.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi H, Wyckoff J, Condeelis J et al (2005) Curr Opin Cell Biol 17(5 SPEC. ISSUE):559–564. https://doi.org/10.1016/j.ceb.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142. https://doi.org/10.1038/nrm1835

    Article  CAS  PubMed  Google Scholar 

  13. Grünert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4(8):657–665. https://doi.org/10.1038/nrm1175

    Article  CAS  PubMed  Google Scholar 

  14. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399. https://doi.org/10.1016/0092-8674(92)90163-7

    Article  CAS  PubMed  Google Scholar 

  15. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3):401–410. https://doi.org/10.1016/0092-8674(92)90164-8

    Article  CAS  PubMed  Google Scholar 

  16. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of mul- timolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62

    Article  CAS  PubMed  Google Scholar 

  17. Kozma R, Ahmed S, Best A, Lim L (2015) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15(4):1942–1952. https://doi.org/10.1128/mcb.15.4.1942

    Article  Google Scholar 

  18. Pollard TD, Borisy GG, Haven N (2003) Pollard Cell 2003(112):1–13. https://doi.org/10.1007/BF02073506

    Article  Google Scholar 

  19. Spector I, Shorlet NR, Blasberger D, Kashman Y (1989) Latrunculins – novel marine macrolides that disrupt microfilament organization and affert cell growth: I. comparison with cytochalasin D. Cell Motil Cytoskeleton 13(3):127–144. https://doi.org/10.1002/cm.970130302

    Article  CAS  PubMed  Google Scholar 

  20. Bubb MR, Senderowicz AMJ, Sausville EA, Duncan KLK, Korn ED (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269(21):14869–14871

    CAS  PubMed  Google Scholar 

  21. Bubb MR, Spector I, Bershadsky AD, Korn ED (1995) Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J Biol Chem 270(8):3463–3466. https://doi.org/10.1074/jbc.270.8.3463

    Article  CAS  PubMed  Google Scholar 

  22. Terry DR, Spector I, Higa T, Bubb MR (1997) Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. J Biol Chem 272(12):7841–7845. https://doi.org/10.1074/jbc.272.12.7841

    Article  CAS  PubMed  Google Scholar 

  23. Pan D (2007) Hippo signaling in organ size control. Genes Dev 21(8):886–897. https://doi.org/10.1101/gad.1536007

    Article  CAS  PubMed  Google Scholar 

  24. Halder G, Johnson RL (2010) Hippo signaling: growth control and beyond. Development 138(1):9–22. https://doi.org/10.1242/dev.045500

    Article  CAS  Google Scholar 

  25. Hergovich A (2012) Mammalian Hippo signalling: a kinase network regulated by protein–protein interactions. Biochem Soc Trans 40(1):124–128. https://doi.org/10.1042/bst20110619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257. https://doi.org/10.1038/nrc3458

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki N, Sugishita Y, Takae S et al (2013) Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci 110(43):17474–17479. https://doi.org/10.1073/pnas.1312830110

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hsueh AJ, Zhai J, Simon C et al (2015) Ovary transplantation: to activate or not to activate. Hum Reprod 30(11):2457–2460. https://doi.org/10.1093/humrep/dev211

    Article  PubMed  Google Scholar 

  29. Reddy P, Deguchi M, Cheng Y, Hsueh AJW (2013) Actin cytoskeleton regulates Hippo signaling. PLoS One 8(9). https://doi.org/10.1371/journal.pone.0073763

  30. Janody F, Gaspar P, Fernandez BG, Jezowska B, Rebelo SR, Bras-Pereira C (2011) Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. J Cell Sci 124(11):e1–e1. https://doi.org/10.1242/jcs.092866

    Article  Google Scholar 

  31. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371. https://doi.org/10.1101/gad.210773.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sansores-Garcia L, Bossuyt W, Wada KI et al (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30(12):2325–2335. https://doi.org/10.1038/emboj.2011.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng Y, Feng Y, Jansson L et al (2015) Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J 29(6):2423–2430. https://doi.org/10.1096/fj.14-267856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. J Cell Biol 189(4):619–629. https://doi.org/10.1083/jcb.201003008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26(7):360–368. https://doi.org/10.1016/S0166-2236(03)00162-0

    Article  CAS  PubMed  Google Scholar 

  36. Matus A (2005) Growth of dendritic spines: a continuing story. Curr Opin Neurobiol 15(1):67–72. https://doi.org/10.1016/j.conb.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  37. Matus A (2014) Actin-based plasticity in dendritic spines. Science 754(2000):754–759. https://doi.org/10.1126/science.290.5492.754

    Article  Google Scholar 

  38. Penzes P, VanLeeuwen JE (2011) Impaired regulation of synaptic actin cytoskeleton in Alzheimer’s disease. Brain Res Rev 67(1–2):184–192. https://doi.org/10.1016/j.brainresrev.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ray A, Shaw E, Bennett DA et al (2017) Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer’s disease. J Neurosci 38(5):1085–1099. https://doi.org/10.1523/jneurosci.2127-17.2017

    Article  CAS  PubMed  Google Scholar 

  40. Sanjari Moghaddam H, Aarabi MH (2018) Aβ-mediated dysregulation of F-actin nanoarchitecture leads to loss of dendritic spines and Alzheimer’s disease-related cognitive impairments. J Neurosci 38(26):5840–5842. https://doi.org/10.1523/jneurosci.0844-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2(9):628–636. https://doi.org/10.1038/35023579

    Article  CAS  PubMed  Google Scholar 

  42. Davis RC, Furukawa R, Fechheimer M (2008) A cell culture model for investigation of Hirano bodies. Acta Neuropathol 115(2):205–217. https://doi.org/10.1007/s00401-007-0275-9

    Article  PubMed  Google Scholar 

  43. Goldman JE (1983) The association of actin with hirano bodies. J Neuropathol Exp Neurol 42(2):146–152. https://doi.org/10.1097/00005072-198303000-00004

    Article  CAS  PubMed  Google Scholar 

  44. Galloway PG, Perry G, Gambetti P (1987) Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 46(2):185–199. https://doi.org/10.1097/00005072-198703000-00006

    Article  CAS  PubMed  Google Scholar 

  45. Iyer N, Wells L, Shahid-Salles S et al (2016) De novo actin polymerization is required for model Hirano body formation in Dictyostelium. Biol Open 5(6):807–818. https://doi.org/10.1242/bio.014944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hong S, Beja-glasser VF, Nfonoyim BM et al (2016) ADF/cofilin-actin rods in neurodegenerative diseases. Curr Alzheimer Res 352(6286):712–716. https://doi.org/10.1126/science.aad8373.Complement

    Article  CAS  Google Scholar 

  47. Rochaix JD (2013) Chlamydomonas reinhardtii. Brenner’s Encycl Genet Second Ed 273(December 1999):521–524. https://doi.org/10.1016/B978-0-12-374984-0.00230-8

    Article  Google Scholar 

  48. Bardy SL, Ng SYM, Jarrell KF (2003) Prokaryotic motility structures. Microbiology 149(2):295–304. https://doi.org/10.1099/mic.0.25948-0

    Article  CAS  PubMed  Google Scholar 

  49. Lindemann CB, Lesich KA (2010) Flagellar and ciliary beating:the proven and the possible. J Cell Sci 123:519–528. https://doi.org/10.1242/jcs.051326

    Article  CAS  PubMed  Google Scholar 

  50. Wemmer KA, Marshall WF (2004) Flagellar motility: all pull together. Curr Biol 14(23):992–993. https://doi.org/10.1016/j.cub.2004.11.019

    Article  CAS  Google Scholar 

  51. Silflow CD (2002) Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127(4):1500–1507. https://doi.org/10.1104/pp.127.4.1500

    Article  Google Scholar 

  52. Cole DG (2003) The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 4(7):435–442. https://doi.org/10.1034/j.1600-0854.2003.t01-1-00103.x

    Article  CAS  PubMed  Google Scholar 

  53. Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5(2):160–165. https://doi.org/10.1016/S1369-5274(02)00302-8

    Article  CAS  PubMed  Google Scholar 

  54. Macnab RM (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181(23):7149–7153

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomas NA, Bardy SL, Jarrell KF (2001) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 25(2):147–174. https://doi.org/10.1016/S0168-6445(00)00061-9

    Article  CAS  PubMed  Google Scholar 

  56. Turner RM (2006) Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 18(2):25. https://doi.org/10.1071/rd05120

    Article  PubMed  Google Scholar 

  57. Inaba K (2004) Molecular architecture of the sperm flagella: molecules for motility and signaling. Zool Sci 20(9):1043–1056. https://doi.org/10.2108/zsj.20.1043

    Article  Google Scholar 

  58. Gaffney EA, Kirkman-Brown JC, Gadêlha H, Blake JR, Smith DJ (2011) Mammalian sperm motility: observation and theory. Annu Rev Fluid Mech 43(1):501–528. https://doi.org/10.1146/annurev-fluid-121108-145442

    Article  Google Scholar 

  59. Harshey RM (2004) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57(1):249–273. https://doi.org/10.1146/annurev.micro.57.030502.091014

    Article  CAS  Google Scholar 

  60. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32. https://doi.org/10.1016/j.ydbio.2003.06.003

    Article  CAS  PubMed  Google Scholar 

  61. Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7(10):713–726. https://doi.org/10.1038/nrm2026

    Article  CAS  PubMed  Google Scholar 

  62. Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36(1):451–477. https://doi.org/10.1146/annurev.biophys.35.040405.101936

    Article  CAS  PubMed  Google Scholar 

  63. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304(April):743–746

    Article  CAS  PubMed  Google Scholar 

  64. Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9(9):364–370. https://doi.org/10.1016/S0962-8924(99)01619-0

    Article  CAS  PubMed  Google Scholar 

  65. Manuscript A (2014) NIH Public Access. 1773(5):642–652. https://doi.org/10.1016/j.bbamcr.2006.07.001.Regulation

    Article  Google Scholar 

  66. Ridley AJ (2001) Rho GTPases in cell migration. J Cell Sci 114(December):2713–2722. https://doi.org/10.4161/sgtp.28997

    Article  CAS  PubMed  Google Scholar 

  67. Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. [review] [76 refs]. Cell 84:371–379

    Article  CAS  PubMed  Google Scholar 

  68. Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144(6):1235–1244. https://doi.org/10.1083/jcb.144.6.1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263. https://doi.org/10.1152/physrev.00018.2013

    Article  CAS  PubMed  Google Scholar 

  70. Radice GP (1980) Locomotion and cell-substratum contacts of Xenopus epidermal cells in vitro and in situ. J Cell Sci 44:201–223

    CAS  PubMed  Google Scholar 

  71. Wilkinson PC (1998) Assays of leukocyte locomotion and chemotaxis. J Immunol Methods 216(1–2):139–153. https://doi.org/10.1016/S0022-1759(98)00075-1

    Article  CAS  PubMed  Google Scholar 

  72. Tessier-lavigne AM, Goodman CS, Tessier-lavigne M, Goodman CS (1996) The molecular biology of axon guidance Published by : American Association for the Advancement of Science The Molecular Biology of Axon Guidance. Science 274(5290):1123–1133

    Article  CAS  PubMed  Google Scholar 

  73. D’Avino PP, Giansanti MG, Petronczki M (2015) Cytokinesis in animal cells. Cold Spring Harb Perspect Biol 7(4):1–18. https://doi.org/10.1101/cshperspect.a015834

    Article  CAS  Google Scholar 

  74. Rappaport R (1971) Cytokinesis in animal cells. Int Rev Cytol 31(C):169–214. https://doi.org/10.1016/S0074-7696(08)60059-5

    Article  CAS  PubMed  Google Scholar 

  75. Vogt ET, Ditzler CE, Irwin PM et al (2017) The ultrastructural organization of actin and myosin II filaments in the contractile ring: new support for an old model of cytokinesis. Mol Biol Cell 28(5):613–623. https://doi.org/10.1091/mbc.e16-06-0466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang YL (2005) The mechanism of cortical ingression during early cytokinesis: thinking beyond the contractile ring hypothesis. Trends Cell Biol 15(11):581–588. https://doi.org/10.1016/j.tcb.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  77. Pelham RJ, Chang F (2002) Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419(6902):82–86. https://doi.org/10.1038/nature00999

    Article  CAS  PubMed  Google Scholar 

  78. Salbreux G, Prost J, Joanny JF (2009) Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys Rev Lett 103(5):1–4. https://doi.org/10.1103/PhysRevLett.103.058102

    Article  CAS  Google Scholar 

  79. Langford GM (1995) Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol 7(1):82–88. https://doi.org/10.1016/0955-0674(95)80048-4

    Article  CAS  PubMed  Google Scholar 

  80. Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 12(1):57–62. https://doi.org/10.1016/S0955-0674(99)00057-5

    Article  CAS  PubMed  Google Scholar 

  81. Almers W, Merrifield CJ, Moss SE et al (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1(1):72–74. https://doi.org/10.1038/9048

    Article  CAS  PubMed  Google Scholar 

  82. Weinberger R, Stow JL, Percival JM, Heimann K, Gunning P (2002) Specific isoforms of actin-binding proteins on distinct populations of golgi-derived vesicles. J Biol Chem 274(16):10743–10750. https://doi.org/10.1074/jbc.274.16.10743

    Article  Google Scholar 

  83. DePina AS, Langford GM (1999) Vesicle transport: the role of actin filaments and myosin motors. Microsc Res Tech 47(2):93–106. https://doi.org/10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  84. Dabiri GA, Sanger JM, Portnoy DA, Southwick FS (2006) Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci 87(16):6068–6072. https://doi.org/10.1073/pnas.87.16.6068

    Article  Google Scholar 

  85. Clerc P, Sansonetti PJ (1987) Entry of Shigella flexneri into HeLa cells: evidence for directed phagocytosis involving actin polymerization and myosin accumulation. Infect Immun 55(11):2681–2688

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cudmore S, Cossart P, Griffiths G, Way M (1995) Actin-based motility of vaccinia virus. Nature 378(6557):636–638. https://doi.org/10.1038/378636a0

    Article  CAS  PubMed  Google Scholar 

  87. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68(3):521–531. https://doi.org/10.1016/0092-8674(92)90188-I

    Article  CAS  PubMed  Google Scholar 

  88. Welch MD, Iwamatsu A, Mitchison TJ (1997) Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385(6613):265–269. https://doi.org/10.1038/385265a0

    Article  CAS  PubMed  Google Scholar 

  89. Welch MD, Rosenblatt J, Skoble J, et al (2019) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/2895395 Linked references are avail. 281(5373):105–108

  90. Goldberg MB, Theriot JA (2006) Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc Natl Acad Sci 92(14):6572–6576. https://doi.org/10.1073/pnas.92.14.6572

    Article  Google Scholar 

  91. Coquis-Rondon M, Sansonetti PJ, Mounier J, Bernardini ML, d’Hauteville H (2006) Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci 86(10):3867–3871. https://doi.org/10.1073/pnas.86.10.3867

    Article  Google Scholar 

  92. Kadurugamuwa JL, Rohde M, Wehland J, Timmis KN (1991) Intercellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganization of the cytoskeletal protein vinculin. Infect Immun 59(10):3463–3471

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Prevost MC, Lesourd M, Arpin M et al (1992) Unipolar reorganization of F-actin layer at bacterial division and bundling of actin filaments by plastin correlate with movement of Shigella flexneri within HeLa cells. Infect Immun 60(10):4088–4099

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Abe H, Rosenblatt J, Agnew BJ, Bamburg JR, Mitchison TJ (2002) Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol 136(6):1323–1332. https://doi.org/10.1083/jcb.136.6.1323

    Article  Google Scholar 

  95. Carlier M-F, Loisel TP, Boujemaa R, Pantaloni D (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401(6753):613–616. https://doi.org/10.1038/44183

    Article  PubMed  Google Scholar 

  96. Nanavati D, Ashton FT, Sanger JM, Sanger JW (1994) Dynamics of actin and alpha-actinin in the tails of Listeria monocytogenes in infected PtK2 cells. Cell Motil Cytoskeleton 28(4):346–358. https://doi.org/10.1002/cm.970280408

    Article  CAS  PubMed  Google Scholar 

  97. Spector I, Poulsen NC, Wetherbee R, Spurck TP, Schultz TF (2002) Diatom gliding is the result of an actin-myosin motility system. Cell Motil Cytoskeleton 44(1):23–33. https://doi.org/10.1002/(sici)1097-0169(199909)44:1<23::aid-cm2>3.3.co;2-4

    Article  Google Scholar 

  98. Bloodgood RA (1981) Flagella-dependent gliding motility in Chlamydomonas. Protoplasma 106(3–4):183–192. https://doi.org/10.1007/BF01275550

    Article  Google Scholar 

  99. Preston TM, King CA (2005) Actin-based motility in the net slime mould Labyrinthula: evidence for the role of myosin in gliding movement. J Eukaryot Microbiol 52(6):461–475. https://doi.org/10.1111/j.1550-7408.2005.00064.x

    Article  CAS  PubMed  Google Scholar 

  100. McBride MJ (2002) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55(1):49–75. https://doi.org/10.1146/annurev.micro.55.1.49

    Article  Google Scholar 

  101. Shaevitz JW, Sun M, Wartel M, Mignot T, Cascales E (2011) Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci 108(18):7559–7564. https://doi.org/10.1073/pnas.1101101108

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M (2014) Host cell invasion by apicomplexan parasites : the junction conundrum. Plos Pathog 10(9):1–9. https://doi.org/10.1371/journal.ppat.1004273

    Article  CAS  Google Scholar 

  103. Gonzalez V, Combe A, David V et al (2009) Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe 5(3):259–272. https://doi.org/10.1016/j.chom.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  104. Baum J, Richard D, Healer J et al (2006) A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 281(8):5197–5208. https://doi.org/10.1074/jbc.M509807200

    Article  CAS  PubMed  Google Scholar 

  105. Entzeroth R, Mattig FR, Werner-Meier R (1998) Structure and function of the parasitophorous vacuole in Eimeria species. Int J Parasitol 28(7):1015–1018. https://doi.org/10.1016/S0020-7519(98)00079-4

    Article  CAS  PubMed  Google Scholar 

  106. Foth BJ, McFadden GI (2003) The apicoplast: a plastid in plasmodium falciparum and other apicomplexan parasites. Int Rev Cytol 224:57–110. https://doi.org/10.1016/S0074-7696(05)24003-2

    Article  PubMed  Google Scholar 

  107. Morrissette NS, Sibley LD (2002) Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 66(1):21–38; table of contents. https://doi.org/10.1128/MMBR.66.1.21-38.2002

  108. Talevich E, Mirza A, Kannan N (2011) Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol 11(1):321. https://doi.org/10.1186/1471-2148-11-321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wasmuth J, Daub J, Peregrín-Alvarez JM, Finney C, Parkinson J (2009) The origins of apicomplexan sequence innovation. Genome Res 19(7):1202–1213. https://doi.org/10.1101/gr.083386.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cowman AF, Berry D, Baum J (2012) The cell biology of disease: the cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198(6):961–971. https://doi.org/10.1083/jcb.201206112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leander BS (2008) Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol 24(2):60–67. https://doi.org/10.1016/j.pt.2007.11.005

    Article  PubMed  Google Scholar 

  112. Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D (2010) Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 8(4):343–357. https://doi.org/10.1016/j.chom.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  113. Ménard R (2001) Gliding motility and cell invasion by Apicomplexa: insights from the Plasmodium sporozoite. Cell Microbiol 3(2):63–73. https://doi.org/10.1046/j.1462-5822.2001.00097.x

    Article  PubMed  Google Scholar 

  114. Mir SS, Biswas S, Habib S (2011) Apicomplexan parasites: molecular approaches toward targeted drug development 147(5):163–186. https://doi.org/10.1002/9783527633883

  115. Wallach M, Frölich S, Entzeroth R (2012) Comparison of protective immune responses to apicomplexan parasites. J Parasitol Res 2012. https://doi.org/10.1155/2012/852591

  116. Bouzid M, Hunter PR, Chalmers RM, Tyler KM (2013) Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 26(1):115–134. https://doi.org/10.1128/CMR.00076-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barta JR, Jenkins MC, Danforth HD (1991) Evolutionary relationships of avian Eimeria species among other Apicomplexan protozoa: monophyly of the apicomplexa is supported. Mol Biol Evol 8(3):345–355

    CAS  PubMed  Google Scholar 

  118. Opitz C, Soldati D (2002) “The glideosome”: a dynamic complex powering gliding motion and host cell invasion by toxoplasma gondii. Mol Microbiol 45(3):597–604. https://doi.org/10.1046/j.1365-2958.2002.03056.x

    Article  CAS  PubMed  Google Scholar 

  119. Tardieux I, Baum J (2016) Reassessing the mechanics of parasite motility and host-cell invasion. J Cell Biol 214(5):507–515. https://doi.org/10.1083/jcb.201605100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Daniell H (2012) NIH Public Access 76(October 2009):211–220. https://doi.org/10.1007/s11103-011-9767-z.Plastid

    Article  Google Scholar 

  121. Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27(2):91–98. https://doi.org/10.1016/j.pt.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  122. Thanh NV, Cowman AF, Hipgrave D et al (2001) Assessment of susceptibility of Plasmodium falciparum to chloroquine, quinine, mefloquine, sulfadoxine-pyrimethamine and artemisinin in southern Viet Nam. Trans R Soc Trop Med Hyg 95(5):513–517

    Article  CAS  PubMed  Google Scholar 

  123. Sakuma M, Setoguchi A, Endo Y (2009) Possible emergence of drug-resistant variants of Babesia gibsoni in clinical cases treated with atovaquone and azithromycin. J Vet Intern Med 23(3):493–498. https://doi.org/10.1111/j.1939-1676.2009.0300.x

    Article  CAS  PubMed  Google Scholar 

  124. Oda T, Iwasa M, Aihara T, Maéda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457(7228):441–445. https://doi.org/10.1038/nature07685

    Article  CAS  PubMed  Google Scholar 

  125. Schüler H, Matuschewski K (2006) Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 7(11):1433–1439. https://doi.org/10.1111/j.1600-0854.2006.00484.x

    Article  CAS  PubMed  Google Scholar 

  126. Kumpula E-P, Kursula I (2015) Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies? Acta Crystallogr Sect F Struct Biol Commun 71(5):500–513. https://doi.org/10.1107/S2053230X1500391X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, S., Tripathi, S., Gauba, R., Dantu, S.C., Kale, A. (2019). Actin Polymerization: A Cellular Perspective for Motility. In: Kale, A. (eds) Actin Polymerization in Apicomplexan. Springer, Singapore. https://doi.org/10.1007/978-981-13-7450-0_1

Download citation

Publish with us

Policies and ethics