Skip to main content

A Review on Agricultural Advancement Based on Computer Vision and Machine Learning

  • Conference paper
  • First Online:
Emerging Technology in Modelling and Graphics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 937))

Abstract

The importance of agriculture in modern society need not be overstated. In order to meet the huge requirements of food and to mitigate, the conventional problems of cropping smart and sustainable agriculture have emerged over the conventional agriculture. From computational perspective, computer vision and machine learning techniques have been applied in many aspects of human and social life, and agriculture is not also an exception. This review paper gives an overview of machine learning and computer vision techniques which are inherently associated with this domain. A summary of the works highlighting different seeds, crops, fruits with the country is also enclosed. The paper also tries to give an analysis, which can help researchers to look at some relevant problems in the context of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Population Prospects. The 2015 Revision, United Nations New York (2015)

    Google Scholar 

  2. T. Brosnan, D. Sun, Inspection and grading of agricultural and food products by computer vision systems. Comput. Electron. Agric. 36, 193–293 (2002)

    Article  Google Scholar 

  3. J.C. Du, D.W. Sun, Learning techniques used in computer vision for food quality evaluation a review. J. Food Eng. 72, 39–55 (2005)

    Article  Google Scholar 

  4. C. Ma, H.H. Zhang, X. Wang, Machine learning for big data analytics in plants. Trends Plant Sci. 19(12), 798–808 (2014)

    Article  Google Scholar 

  5. N. Gandhi, J.L. Armstrong, A review of the application of data mining techniques for decision making in agriculture, in 2nd International Conference on Contemporary Computing and Informatics (2016)

    Google Scholar 

  6. F.P. Sanz, P.J. Navarro, M.E. Cortines, Plant phonemics: an overview of image acquisition technologies and image data analysis algorithms. Giga Sci. 6(11), 1–18 (2017)

    Google Scholar 

  7. V.P. Kulalvaimozhi, G.M. Alex, J.S. Peter, Image processing in agriculture www.ijaetmas.com 04(03), 142–151 (2017)

  8. R. Chahar, P. Soni, A study of image processing in agriculture for detect the plant disease. Int. J. Comput. Sci. Mob. Comput. 4(7), 581–587 (2015)

    Google Scholar 

  9. A.P. Janwale, S.L. Santosh, Digital image processing applications in agriculture: a survey (2015)

    Google Scholar 

  10. H. Wang, S. Zhang, W. Huang, Z. You, Plant diseased leaf segmentation and recognition by fusion of super pixel. K-means and PHOG. Optik 157, 866–872 (2018)

    Google Scholar 

  11. Y. Lu, S. Yi, Z. Nianyin, Y. Liu, Y. Zhang, Identification of rice diseases using deep convolutional neural networks. Neurocomputing 267, 378–384 (2017)

    Article  Google Scholar 

  12. A.Y. Gilandeh, S. Sabzi, H. Javadikia, Machine vision system for the automatic segmentation of plants under different lighting conditions. Biosys. Eng. 161, 157–173 (2017)

    Article  Google Scholar 

  13. S. Haug, J. Ostermann, Crop/Weed field image dataset for the evaluation of computer vision based precision agriculture tasks, in ECCV 2014 Workshops, Part IV, LNCS 8928, (2015), pp. 105–116

    Google Scholar 

  14. N. Bendary-El, E. Hariri -El, E.A. Hassanien, Using machine learning techniques for evaluating tomato ripeness. Expert. Syst. Appl. 42, 1892–1905 (2015)

    Google Scholar 

  15. V.N. Rivera, G.J. Sanchis, C.J. Perez, J.J. Carrasco, M.M. Giraldo, D. Lorente, S. Cubero, J. Blasco, Early detection of mechanical damage in mango using NIR hyper spectral images and machine learning. Biosys. Eng. 122, 91–98 (2014)

    Article  Google Scholar 

  16. S.D. Park, C. Kim, S. Yoon, A. Fuentes, A robust deep learning based detector for real-time tomato plant diseases and pests recognition. Sensors 17, 2022 (2017)

    Article  Google Scholar 

  17. S.W. Qureshi, A. Payne, K.B. Walsh, R. Linker, O. Cohen, M.N. Dailey, Machine vision for counting fruit on mango tree canopies. Precision Agric. 18, 224–244 (2017)

    Article  Google Scholar 

  18. S. Sankaran, A. Mishra, J.M. Maja, R. Ehsani, Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Comput. Electron. Agric. 77, 127–134 (2011)

    Article  Google Scholar 

  19. A. Chlingaryana, S. Sukkarieha, B. Whelan, Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 151, 61–69 (2018)

    Article  Google Scholar 

  20. A. Singh, B. Ganapathysubramanian, K.A. Singh, S. Sarkar, Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21(2), 110–124 (2016)

    Article  Google Scholar 

  21. F. Wang, L. Song, K. Omasa, J. Wang, Automatically diagnosing leaf scorching and disease symptoms in trees/shrubs by using RGB image computation with a common statistical algorithm. Ecol. Inform. 38, 110–114 (2017)

    Article  Google Scholar 

  22. C.B. Wetterich, R. Kumar, S. Sankaran, B.J. Junior, R. Ehsani, G.L. Marcassa, A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of Huanglongbing citrus disease in the USA and Brazil. J. Spectrosc. 1–6 (2013)

    Google Scholar 

  23. T. McKinnon, P. Hoff, Comparing RGB-based vegetation indices with NDVI for agricultural drone imagery. AGBX 02, 1–17 (2017)

    Google Scholar 

  24. V. Ramya, A.M. Lydia, Leaf disease detection and classification using neural networks. Int. J. Adv. Res. Comput. Commun. Eng. 5(11) (2016)

    Google Scholar 

  25. A. Tellaechea, G. Pajares, P.X. Burgos Artizzub, A. Ribeiro, A computer vision approach for weeds identification through support vector machines. Appl. Soft Comput. 11, 908–915 (2011)

    Article  Google Scholar 

  26. J. Behmann, J. Steinrucken, L. Plumer, Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote. Sens. 93, 98–111 (2014)

    Article  Google Scholar 

  27. A. Backhaus, F. Bollenbeck, U. Seiffert, Robust classification of the nutrition state in crop plants by hyper spectral imaging and artificial neural networks, in 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (2011)

    Google Scholar 

  28. J.E. Coopersmith, S.B. Minsker, E.C. Wenzel, J.B. Gilmore, Machine learning assessments of soil drying for agricultural planning. Comput. Electron. Agric. 104, 93–104 (2014)

    Article  Google Scholar 

  29. D. Chen, K. Neumann, S. Friedel, B. Kilian, M. Chen, T. Altmann, C. Klukas, Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 4636–4655 (2014)

    Article  Google Scholar 

  30. H. Zareiforoush, S. Minaei, R.M. Alizadeh, A. Banakar, Potential applications of computer vision in quality inspection of rice: a review. Food Eng. Rev. 7, 321–345 (2015)

    Article  Google Scholar 

  31. K. Mollazade, E. Ebrahimi, S. Babaei, Toward an automatic wheat purity measuring device: a machine vision- based neural networks-assisted imperialist competitive algorithm approach. Measurement 55, 196–205 (2014)

    Article  Google Scholar 

  32. F.Y. Kuo, L.C. Chung, J.K. Huang, Y.S. Chen, H.M. Lai, C.Y. Chen, Detecting Bakanae disease in rice seedlings by machine vision. Comput. Electron. Agric. 121, 404–411 (2016)

    Article  Google Scholar 

  33. D.M. Johnsona, W.W. Hsieha, J.A. Cannonb, A. Davidson, F. Bedardd, Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 218–219, 74–84 (2016)

    Article  Google Scholar 

  34. X.E. Pantazi, D. Moshou, T. Alexandridis, R.L. Whetton, A.M. Mouazen, Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 121, 57–65 (2016)

    Article  Google Scholar 

  35. L. Emmi, M. Gonzalez de Soto, P. Gonzalez de Santos, Configuring a fleet of ground robots for agricultural tasks, in ROBOT2013: First Iberian Robotics Conference (2014), pp. 505–517

    Chapter  Google Scholar 

  36. T. Rumpf, A.K. Mahlein, U. Steiner, E.C. Oerke, H.W. Dehne, L. Plumer, Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 74, 91–99 (2010)

    Article  Google Scholar 

  37. Q. Yao, Z. Guan, Y. Zhou, J. Tang, Y. Hu, B. Yang, Application of support vector machine for detecting rice diseases using shape and color texture features, in ICEC ‘09 Proceedings of the 2009 International Conference on Engineering Computation (2009), pp. 79–83

    Google Scholar 

  38. M. Atas, Y. Yardimci, A. Temizel, A new approach to aflatoxin detection in chili pepper by machine vision. Comput. Electron. Agric. 87, 129–141 (2012)

    Article  Google Scholar 

  39. J.J. Casanova, A.S. O’haughnessy, R.S. Evett, M.C. Rush, Development of a wireless computer vision instrument to detect biotic stress in wheat. Sensors (Basel) 14, 17753–17769 (2014)

    Article  Google Scholar 

  40. M.J. Pena, T.J. Sanchez, S.A. Prez, I.A. de Castro, L.F. Granados, Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors 15, 5609–5626 (2015)

    Article  Google Scholar 

  41. M.L. Perez-Bueno, M. Pineda, F.M. Cabeza, M. Baron, Multicolor fluorescence imaging as a candidate for disease detection in plant phenotyping. Front Plant Sci. 1790 (2016)

    Google Scholar 

  42. S.S. Sannakki, S.V. Rajpurohit, B.V. Nargund, P. Kulkarni, Diagnosis and classification of grape leaf diseases using neural networks, in Fourth International Conference on Computing Communications and Networking Technologies (ICCCNT) (2013)

    Google Scholar 

  43. V. Singh, K.A. Misra, Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 4, 41–49 (2017)

    Google Scholar 

  44. Chaudhary, P., Chaudhari, K.A., Cheeran, N.A., Godara, S.: Color transform based approach for disease spot detection on plant leaf. Int. J. Comput. Sci. Telecommun. 3(6), (2012)

    Google Scholar 

  45. S. Arivazhagan, N.R. Shebiah, S. Ananthi, V.S. Varthini, Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int: CIGR J. 15(1), 211–217 (2013)

    Google Scholar 

  46. S. Zhang, Z. Wu, Z. You, L. Zhang, Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric. 134, 135–141 (2017)

    Article  Google Scholar 

  47. T.S. Namin, M. Esmaeilzadeh, M. Najafi, B.T. Brown, O.J. Borevitz: Deep phenotyping: deep learning for temporal phenotype/genotype classification. CC-BY 4.0 International License (2017)

    Google Scholar 

  48. X. Bai, L. Zhang, X. Li, Z. Fu, X. Lv, A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images. Comput. Electron. Agric. 136, 157–165 (2017)

    Article  Google Scholar 

  49. S. Phadikar, J. Sil, K.A. Das, Rice diseases classification using feature selection and rule generation techniques. Comput. Electron. Agric. 90, 76–85 (2013)

    Article  Google Scholar 

  50. U. Skrubej, C. Rozman, D. Stajnko, Assessment of germination rate of the tomato seeds using image processing and machine learning. Europ. J. Hort. Sci. 80(2), 68–75 (2015)

    Article  Google Scholar 

  51. H. AI Hiary, S., Bani Ahmad, M. Reyalat, M. Braik, Z. Rahamneh, Fast and accurate detection and classification of plant diseases. Int. J. Comput. Appl. 17, 8875–8887 (2011)

    Google Scholar 

  52. P.K. Ferentinos, Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)

    Article  Google Scholar 

  53. A. Kamilaris, X.F. Prenafeta-Boldu, Deep learning in agriculture- a survey. Comput. Electron. Agric. 174, 70–90 (2018)

    Article  Google Scholar 

  54. P.A. French, P.M. Pound, A.J. Atkinson, J.A. Townsend, H.M. Wilson, M. Griffiths, S.A. Jackson, A. Bulat, G. Tzimiropoulos, M.D. Wells, H.E. Murchie, P.T. Pridmore, Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Giga Sci. 6, 1–10 (2017)

    Google Scholar 

  55. N.H. Hellin, J. Rincon del Martínez, R. Miguel Domingo, F. Valles Soto, R. Sanchez Torres, A decision support system for managing irrigation in agriculture (2016)

    Google Scholar 

  56. A. Camargo, J.S. Smith, An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosys. Eng. 102, 9–21 (2009)

    Article  Google Scholar 

  57. Z.J. Tejada, R. Calderon, A.J. Navas-Cortes, Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 7, 5584 (2015)

    Article  Google Scholar 

  58. K.Y. Huang, Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Comput. Electron. Agric. 57, 3–11 (2007)

    Article  Google Scholar 

  59. S. Sengupta, K.A. Das, Particle swarm optimization based incremental classifier design for rice disease prediction. Comput. Electron. Agric. 140, 443–451 (2017)

    Article  Google Scholar 

  60. L.Y. Everingham, W.C. Smyth, G.N. Inman Bamber, Ensemble data mining approaches to forecast regional crop production. Agric. For. Meteorol. 149, 689–696 (2009)

    Google Scholar 

  61. R. Natarajan, J. Subramanian, I.E. Papageorgiou, Hybrid learning of fuzzy cognitive maps for sugarcane yield classification. Comput. Electron. Agric. 127, 147–157 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abriti Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, A., Ghosh, S., Das, A.K., Goswami, S., Das Choudhury, S., Sen, S. (2020). A Review on Agricultural Advancement Based on Computer Vision and Machine Learning. In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-7403-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7403-6_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7402-9

  • Online ISBN: 978-981-13-7403-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics