Skip to main content

Pediatric Neurocritical Care

  • Chapter
  • First Online:
Neurocritical Care
  • 1122 Accesses

Abstract

Pediatric neurocritical care is a multidisciplinary field of medicine. The main role of pediatric neurocritical care is improving outcomes in children with primary brain injury by various neurological diseases and limiting secondary brain injury through state-of-the-art critical care delivery and the support of integrating neuronal function. Recognition of neurological deficits in children is not easy even for an experienced clinician. The diseases such as stroke, cardiac arrest, and traumatic brain injury (TBI) have distinct clinical and pathophysiological characteristics that distinguish them from their adult features and prevent the direct translation of the adult experience to pediatric patients. In addition, the importance of the application of neuromonitoring and neuroprotective strategies in the pediatric intensive care unit has been aware in both primary neurological and primary non-neurological disease. Although much can be learned from the adult experience, there is a need for evidence-based guidelines in pediatric neurocritical care since there are differences in the circumstances that surround the emergence of neurocritical care in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margulies SS, Thibault KL. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J Biomech Eng. 2000;122:364–71. https://doi.org/10.1115/1.1287160. Pubmed: 11036559.

    Article  CAS  PubMed  Google Scholar 

  2. Ommaya AK, Goldsmith W, Thibault L. Biomechanics and neuropathology of adult and paediatric head injury. Br J Neurosurg. 2002;16:220–42. https://doi.org/10.1080/02688690220148824. Pubmed: 12201393.

    Article  CAS  PubMed  Google Scholar 

  3. Bailey DK. The normal cervical spine in infants and children. Radiology. 1952;59:712–9. https://doi.org/10.1148/59.5.712. Pubmed: 12994006.

    Article  CAS  PubMed  Google Scholar 

  4. Fesmire FM, Luten RC. The pediatric cervical spine: developmental anatomy and clinical aspects. J Emerg Med. 1989;7:133–42. https://doi.org/10.1016/0736-4679(89)90258-8. Pubmed: 2661668.

    Article  CAS  PubMed  Google Scholar 

  5. Stafford PW, Blinman TA, Nance ML. Practical points in evaluation and resuscitation of the injured child. Surg Clin North Am. 2002;82:273–301. https://doi.org/10.1016/S0039-6109(02)00006-3. Pubmed: 12113366.

    Article  PubMed  Google Scholar 

  6. Adewale L. Anatomy and assessment of the pediatric airway. Paediatr Anaesth. 2009;19(Suppl 1):1–8. https://doi.org/10.1111/j.1460-9592.2009.03012.x. Pubmed: 19572839.

    Article  PubMed  Google Scholar 

  7. Jakob H, et al. Pediatric polytrauma management. Eur J Trauma Emerg Surg. 2010;36:325–38. https://doi.org/10.1007/s00068-010-1125-3. Pubmed: 26816037.

    Article  PubMed  Google Scholar 

  8. Gutierrez IM, Ben-Ishay O, Mooney DP. Pediatric thoracic and abdominal trauma. Minerva Chir. 2013;68:263–74. Pubmed: 23774091.

    CAS  PubMed  Google Scholar 

  9. Christiano JG, Tummers M, Kennedy A. Clinical significance of isolated intraperitoneal fluid on computed tomography in pediatric blunt abdominal trauma. J Pediatr Surg. 2009;44:1242–8. https://doi.org/10.1016/j.jpedsurg.2009.02.045. Pubmed: 19524748.

    Article  PubMed  Google Scholar 

  10. Williams M, Lee JK. Intraoperative blood pressure and cerebral perfusion: strategies to clarify hemodynamic goals. Paediatr Anaesth. 2014;24:657–67. https://doi.org/10.1111/pan.12401. Pubmed: 24725244.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Suttipongkaset P, et al. Blood pressure thresholds and mortality in pediatric traumatic brain injury. Pediatrics. 2018;142 https://doi.org/10.1542/peds.2018-0594. pii: e20180594. Pubmed: 30064999.

    Article  PubMed  Google Scholar 

  12. Schöning M, Hartig B. Age dependence of total cerebral blood flow volume from childhood to adulthood. J Cereb Blood Flow Metab. 1996;16:827–33. https://doi.org/10.1097/00004647-199609000-00007. Pubmed: 8784227.

    Article  PubMed  Google Scholar 

  13. Wu C, et al. Age-related changes of normal cerebral and cardiac blood flow in children and adults aged 7 months to 61 years. J Am Heart Assoc. 2016;5 https://doi.org/10.1161/JAHA.115.002657. pii: e002657. Pubmed: 26727967.

  14. Kehrer M, Schöning M. A longitudinal study of cerebral blood flow over the first 30 months. Pediatr Res. 2009;66:560–4. https://doi.org/10.1203/PDR.0b013e3181ba1a29. Pubmed: 19668104.

    Article  PubMed  Google Scholar 

  15. Wintermark M, et al. Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography. Pediatrics. 2004;113:1642–52. https://doi.org/10.1542/peds.113.6.1642. Pubmed: 15173485.

    Article  PubMed  Google Scholar 

  16. Kochanek PM, et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med. 2000;1:4–19. https://doi.org/10.1097/00130478-200007000-00003. Pubmed: 12813280.

    Article  PubMed  Google Scholar 

  17. Verlhac S. Transcranial Doppler in children. Pediatr Radiol. 2011;41(Suppl 1):S153–65. https://doi.org/10.1007/s00247-011-2038-y. Pubmed: 21523592.

    Article  PubMed  Google Scholar 

  18. Sharma D, Souter MJ, Moore AE, Lam AM. Clinical experience with transcranial Doppler ultrasonography as a confirmatory test for brain death: a retrospective analysis. Neurocrit Care. 2011;14:370–6. https://doi.org/10.1007/s12028-010-9415-5. Pubmed: 20694525.

    Article  PubMed  Google Scholar 

  19. Allen BB, Chiu YL, Gerber LM, Ghajar J, Greenfield JP. Age-specific cerebral perfusion pressure thresholds and survival in children and adolescents with severe traumatic brain injury. Pediatr Crit Care Med. 2014;15:62–70. https://doi.org/10.1097/PCC.0b013e3182a556ea. Pubmed: 24196011.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miller Ferguson N, et al. Intracranial hypertension and cerebral hypoperfusion in children with severe traumatic brain injury: thresholds and burden in accidental and abusive insults. Pediatr Crit Care Med. 2016;17:444–50. https://doi.org/10.1097/PCC.0000000000000709. Pubmed: 27028792.

    Article  PubMed  Google Scholar 

  21. Mehta A, et al. Relationship of intracranial pressure and cerebral perfusion pressure with outcome in young children after severe traumatic brain injury. Dev Neurosci. 2010;32:413–9. https://doi.org/10.1159/000316804. Pubmed: 20847542.

    Article  CAS  PubMed  Google Scholar 

  22. Kochanek PM, et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents—second edition. Pediatr Crit Care Med. 2012;13(Suppl 1):S1–S82. https://doi.org/10.1097/PCC.0b013e31823f435c. Pubmed: 22217782.

    Article  PubMed  Google Scholar 

  23. Robertson CS, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27:2086–95. https://doi.org/10.1097/00003246-199910000-00002. Pubmed: 10548187.

    Article  CAS  PubMed  Google Scholar 

  24. Figaji AA, Fieggen AG, Argent AC, Leroux PD, Peter JC. Does adherence to treatment targets in children with severe traumatic brain injury avoid brain hypoxia? A brain tissue oxygenation study. Neurosurgery. 2008;63:83–91. https://doi.org/10.1227/01.NEU.0000335074.39728.00, discussion 91. Pubmed: 18728572.

    Article  PubMed  Google Scholar 

  25. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92. Pubmed: 2201348.

    CAS  PubMed  Google Scholar 

  26. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238. https://doi.org/10.1152/physrev.1959.39.2.183. Pubmed: 13645234.

    Article  CAS  PubMed  Google Scholar 

  27. Altman DI, Volpe JJ. Positron emission tomography in newborn infants. Clin Perinatol. 1991;18:549–62. https://doi.org/10.1016/S0095-5108(18)30512-8. Pubmed: 1934855.

    Article  CAS  PubMed  Google Scholar 

  28. Vavilala MS, Lee LA, Lam AM. The lower limit of cerebral autoregulation in children during sevoflurane anesthesia. J Neurosurg Anesthesiol. 2003;15:307–12. https://doi.org/10.1097/00008506-200310000-00003. Pubmed: 14508171.

    Article  PubMed  Google Scholar 

  29. Stiefel MF, et al. Brain tissue oxygen monitoring in pediatric patients with severe traumatic brain injury. J Neurosurg. 2006;105(4 Suppl):281–6. https://doi.org/10.3171/ped.2006.105.4.281. Pubmed: 17328278.

    Article  PubMed  Google Scholar 

  30. Figaji AA, Kent SJ. Brain tissue oxygenation in children diagnosed with brain death. Neurocrit Care. 2010;12:56–61. https://doi.org/10.1007/s12028-009-9298-5. Pubmed: 19847675.

    Article  CAS  PubMed  Google Scholar 

  31. Prins ML. Glucose metabolism in pediatric traumatic brain injury. Childs Nerv Syst. 2017;33:1711–8. https://doi.org/10.1007/s00381-017-3518-7. Pubmed: 29149386.

    Article  PubMed  Google Scholar 

  32. Hutchinson P, O’Phelan K, Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit Care. 2014;21(Suppl 2):S148–58. https://doi.org/10.1007/s12028-014-0035-3. Pubmed: 25208673.

    Article  PubMed  Google Scholar 

  33. Tolias C, Richards D, Bowery N, Sgouros S. Investigation of extracellular amino acid release in children with severe head injury using microdialysis. A pilot study. Acta Neurochir Suppl. 2002;81:377–9. Pubmed: 12168351.

    CAS  PubMed  Google Scholar 

  34. Tolias CM, Richards DA, Bowery NG, Sgouros S. Extracellular glutamate in the brains of children with severe head injuries: a pilot microdialysis study. Childs Nerv Syst. 2002;18:368–74. https://doi.org/10.1007/s00381-002-0623-y. Pubmed: 12192496.

    Article  PubMed  Google Scholar 

  35. Ketharanathan N, et al. Combining brain microdialysis and translational pharmacokinetic modeling to predict drug concentrations in pediatric severe traumatic brain injury: the next step toward evidence-based pharmacotherapy? J Neurotrauma. 2018;36. https://doi.org/10.1089/neu.2017.5588. Pubmed: 30019622.

    Article  PubMed  Google Scholar 

  36. Rohlwink UK, et al. The relationship between intracranial pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery. 2012;70:1220–30. https://doi.org/10.1227/NEU.0b013e318243fc59, discussion 1231. Pubmed: 22134142.

    Article  PubMed  Google Scholar 

  37. Bell MJ, et al. Differences in medical therapy goals for children with severe traumatic brain injury-an international study. Pediatr Crit Care Med. 2013;14:811–8. https://doi.org/10.1097/PCC.0b013e3182975e2f. Pubmed: 23863819.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Human T, et al. Treatment of hyponatremia in patients with acute neurological injury. Neurocrit Care. 2017;27:242–8. https://doi.org/10.1007/s12028-016-0343-x. Pubmed: 28054290.

    Article  CAS  PubMed  Google Scholar 

  39. Valentine SL, et al. Consensus recommendations for RBC transfusion practice in critically ill children from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med. 2018;19:884–98. https://doi.org/10.1097/PCC.0000000000001613. Pubmed: 30180125.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Figaji AA, et al. The effect of blood transfusion on brain oxygenation in children with severe traumatic brain injury. Pediatr Crit Care Med. 2010;11:325–31. https://doi.org/10.1097/PCC.0b013e3181b80a8e. Pubmed: 19794323.

    Article  PubMed  Google Scholar 

  41. Dhabangi A, et al. Cerebral oximetry in Ugandan children with severe anemia: clinical categories and response to transfusion. JAMA Pediatr. 2016;170:995–1002. https://doi.org/10.1001/jamapediatrics.2016.1254. Pubmed: 27532507.

    Article  PubMed  Google Scholar 

  42. Güresir E, Schuss P, Seifert V, Vatter H. Decompressive craniectomy in children: single-center series and systematic review. Neurosurgery. 2012;70:881–8, discussion 888–9

    Article  PubMed  Google Scholar 

  43. Pérez Suárez EP, et al. Decompressive craniectomy in 14 children with severe head injury: clinical results with long-term follow-up and review of the literature. J Trauma. 2011;71:133–40. https://doi.org/10.1097/TA.0b013e318211071f. Pubmed: 21818021.

    Article  PubMed  Google Scholar 

  44. Thomale UW, Graetz D, Vajkoczy P, Sarrafzadeh AS. Severe traumatic brain injury in children—a single center experience regarding therapy and long-term outcome. Childs Nerv Syst. 2010;26:1563–73. https://doi.org/10.1007/s00381-010-1103-4. Pubmed: 20177687.

    Article  PubMed  Google Scholar 

  45. Adamo MA, Drazin D, Waldman JB. Decompressive craniectomy and postoperative complication management in infants and toddlers with severe traumatic brain injuries. J Neurosurg Pediatr. 2009;3:334–9. https://doi.org/10.3171/2008.12.PEDS08310. Pubmed: 19338415.

    Article  PubMed  Google Scholar 

  46. Jagannathan J, et al. Outcome following decompressive craniectomy in children with severe traumatic brain injury: a 10-year single-center experience with long-term follow up. J Neurosurg. 2007;106(4 Suppl):268–75. https://doi.org/10.3171/ped.2007.106.4.268. Pubmed: 17465359.

    Article  PubMed  Google Scholar 

  47. Josan VA, Sgouros S. Early decompressive craniectomy may be effective in the treatment of refractory intracranial hypertension after traumatic brain injury. Childs Nerv Syst. 2006;22:1268–74. https://doi.org/10.1007/s00381-006-0064-0. Pubmed: 16496158.

    Article  CAS  PubMed  Google Scholar 

  48. Rutigliano D, et al. Decompressive craniectomy in pediatric patients with traumatic brain injury with intractable elevated intracranial pressure. J Pediatr Surg. 2006;41:83–7. https://doi.org/10.1016/j.jpedsurg.2005.10.010, discussion 83. Pubmed: 16410113.

    Article  PubMed  Google Scholar 

  49. Oluigbo CO, et al. Comparison of outcomes following decompressive craniectomy in children with accidental and nonaccidental blunt cranial trauma. J Neurosurg Pediatr. 2012;9:125–32. https://doi.org/10.3171/2011.11.PEDS09449. Pubmed: 22295915.

    Article  PubMed  Google Scholar 

  50. Taylor A, et al. A randomized trial of very early decompressive craniectomy in children with traumatic brain injury and sustained intracranial hypertension. Childs Nerv Syst. 2001;17:154–62. https://doi.org/10.1007/s003810000410. Pubmed: 11305769.

    Article  CAS  PubMed  Google Scholar 

  51. Ardissino M, Tang A, Muttoni E, Tsang K. Decompressive craniectomy in paediatric traumatic brain injury: a systematic review of current evidence. Childs Nerv Syst. 2018. https://doi.org/10.1007/s00381-018-3977-5. Pubmed: 30215120.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rocque BG, et al. Complications following pediatric cranioplasty after decompressive craniectomy: a multicenter retrospective study. J Neurosurg Pediatr. 2018;22:225–32. https://doi.org/10.3171/2018.3.PEDS17234. Pubmed: 29882736.

    Article  PubMed  Google Scholar 

  53. Moler FW, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in children. N Engl J Med. 2015;372:1898–908. https://doi.org/10.1056/NEJMoa1411480. Pubmed: 25913022.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moler FW, et al.; THAPCA Trial Investigators. Therapeutic hypothermia after in-hospital cardiac arrest in children. N Engl J Med. 2017;376:318–29. https://doi.org/10.1056/NEJMoa1610493. Pubmed: 28118559.

    Article  PubMed  Google Scholar 

  55. Hutchison JS, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358:2447–56. https://doi.org/10.1056/NEJMoa0706930. Pubmed: 18525042.

    Article  CAS  PubMed  Google Scholar 

  56. Adelson PD, et al. Comparison of hypothermia and normothermia after severe traumatic brain injury in children (cool kids): a phase 3 randomised controlled trial. Lancet Neurol. 2013;12:546–53. https://doi.org/10.1016/S1474-4422(13)70077-2. Pubmed: 23664370.

    Article  PubMed  Google Scholar 

  57. Crompton EM, et al. Meta-analysis of therapeutic hypothermia for traumatic brain injury in adult and pediatric patients. Crit Care Med. 2017;45:575–83. https://doi.org/10.1097/CCM.0000000000002205. Pubmed: 27941370.

    Article  PubMed  Google Scholar 

  58. Ma C, et al. Is therapeutic hypothermia beneficial for pediatric patients with traumatic brain injury? A meta-analysis. Childs Nerv Syst. 2013;29:979–84. https://doi.org/10.1007/s00381-013-2076-x. Pubmed: 23503613.

    Article  PubMed  Google Scholar 

  59. Zhang BF, et al. Meta-analysis of the efficacy and safety of therapeutic hypothermia in children with acute traumatic brain injury. World Neurosurg. 2015;83:567–73. https://doi.org/10.1016/j.wneu.2014.12.010. Pubmed: 25514616.

    Article  PubMed  Google Scholar 

  60. Rosario BL, et al. Presenting characteristics associated with outcome in children with severe traumatic brain injury: a secondary analysis from a randomized, controlled trial of therapeutic hypothermia. Pediatr Crit Care Med. 2018. https://doi.org/10.1097/PCC.0000000000001676. Pubmed: 30067578.

  61. Dixon RR, Nocera M, Zolotor AJ, Keenan HT. Intracranial pressure monitoring in infants and young children with traumatic brain injury. Pediatr Crit Care Med. 2016;17:1064–72. https://doi.org/10.1097/PCC.0000000000000937. Pubmed: 27632060.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dean NP, Boslaugh S, Adelson PD, Pineda JA, Leonard JR. Physician agreement with evidence-based recommendations for the treatment of severe traumatic brain injury in children. J Neurosurg. 2007;107(5 Suppl):387–91. https://doi.org/10.3171/PED-07/11/387. Pubmed: 18459901.

    Article  PubMed  Google Scholar 

  63. Keenan HT, Nocera M, Bratton SL. Frequency of intracranial pressure monitoring in infants and young toddlers with traumatic brain injury. Pediatr Crit Care Med. 2005;6:537–41. https://doi.org/10.1097/01.PCC.0000164638.44600.67. Pubmed: 16148812.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Anderson RC, et al. Complications of intracranial pressure monitoring in children with head trauma. J Neurosurg. 2004;101(1 Suppl):53–8. https://doi.org/10.3171/ped.2004.101.2.0053. Pubmed: 16206972.

    Article  PubMed  Google Scholar 

  65. Baldwin HZ, Rekate HL. Preliminary experience with controlled external lumbar drainage in diffuse pediatric head injury. Pediatr Neurosurg. 1991/1992;17:115–20. https://doi.org/10.1159/000120579. Pubmed: 1819324.

    Article  PubMed  Google Scholar 

  66. Levy DI, et al. Controlled lumbar drainage in pediatric head injury. J Neurosurg. 1995;83:453–60. https://doi.org/10.3171/jns.1995.83.3.0453. Pubmed: 7666222.

    Article  CAS  PubMed  Google Scholar 

  67. Shapiro K, Marmarou A. Clinical applications of the pressure-volume index in treatment of pediatric head injuries. J Neurosurg. 1982;56:819–25. https://doi.org/10.3171/jns.1982.56.6.0819. Pubmed: 7077382.

    Article  CAS  PubMed  Google Scholar 

  68. Woernle CM, Burkhardt JK, Bellut D, Krayenbuehl N, Bertalanffy H. Do iatrogenic factors bias the placement of external ventricular catheters?—a single institute experience and review of the literature. Neurol Med Chir (Tokyo). 2011;51:180–6. https://doi.org/10.2176/nmc.51.180. Pubmed: 21441733.

    Article  Google Scholar 

  69. Miller C, Tummala RP. Risk factors for hemorrhage associated with external ventricular drain placement and removal. J Neurosurg. 2017;126:289–97. https://doi.org/10.3171/2015.12.JNS152341. Pubmed: 27035168.

    Article  PubMed  Google Scholar 

  70. Figaji AA, Zwane E, Fieggen AG, Peter JC, Leroux PD. Acute clinical grading in pediatric severe traumatic brain injury and its association with subsequent intracranial pressure, cerebral perfusion pressure, and brain oxygenation. Neurosurg Focus. 2008;25:E4. https://doi.org/10.3171/FOC.2008.25.10.E4. Pubmed: 18828702.

    Article  PubMed  Google Scholar 

  71. Skippen P, et al. Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med. 1997;25:1402–9. https://doi.org/10.1097/00003246-199708000-00031. Pubmed: 9267957.

    Article  CAS  PubMed  Google Scholar 

  72. Warner KJ, Cuschieri J, Copass MK, Jurkovich GJ, Bulger EM. The impact of prehospital ventilation on outcomeafter severe traumatic brain injury. J Trauma. 2007;62:1330–6.

    Article  PubMed  Google Scholar 

  73. Kasoff SS, Lansen TA, Holder D, Filippo JS. Aggressive physiologic monitoring of pediatric head trauma patients with elevated intracranial pressure. Pediatr Neurosci. 1988;14:241–9. https://doi.org/10.1159/000120397. Pubmed: 3151702.

    Article  CAS  PubMed  Google Scholar 

  74. Marshall GT, et al. Pentobarbital coma for refractory intra-cranial hypertension after severe traumatic brain injury: mortality predictions and one-year outcomes in 55 patients. J Trauma. 2010;69:275–83. https://doi.org/10.1097/TA.0b013e3181de74c7. Pubmed: 20699736.

    Article  PubMed  Google Scholar 

  75. Pittman T, Bucholz R, Williams D. Efficacy of barbiturates in the treatment of resistant intracranial hypertension in severely head-injured children. Pediatr Neurosci. 1989;15:13–7. https://doi.org/10.1159/000120433. Pubmed: 2635769.

    Article  CAS  PubMed  Google Scholar 

  76. Mellion SA, et al. High-dose barbiturates for refractory intracranial hypertension in children with severe traumatic brain injury. Pediatr Crit Care Med. 2013;14:239–47. https://doi.org/10.1097/PCC.0b013e318271c3b2. Pubmed: 23392360.

    Article  PubMed  Google Scholar 

  77. Chung MG, O’Brien NF. Prevalence of early posttraumatic seizures in children with moderate to severe traumatic brain injury despite levetiracetam prophylaxis. Pediatr Crit Care Med. 2016;17:150–6. https://doi.org/10.1097/PCC.0000000000000588. Pubmed: 26669640.

    Article  PubMed  Google Scholar 

  78. Liesemer K, Bratton SL, Zebrack CM, Brockmeyer D, Statler KD. Early post-traumatic seizures in moderate to severe pediatric traumatic brain injury: rates, risk factors, and clinical features. J Neurotrauma. 2011;28:755–62. https://doi.org/10.1089/neu.2010.1518. Pubmed: 21381863.

    Article  PubMed  Google Scholar 

  79. Vaewpanich J, Reuter-Rice K. Continuous electroencephalography in pediatric traumatic brain injury: seizure characteristics and outcomes. Epilepsy Behav. 2016;62:225–30. https://doi.org/10.1016/j.yebeh.2016.07.012. Pubmed: 27500827.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kurz JE, et al. Variation in anticonvulsant selection and electroencephalographic monitoring following severe traumatic brain injury in children-understanding resource availability in sites participating in a comparative effectiveness study. Pediatr Crit Care Med. 2016;17:649–57. https://doi.org/10.1097/PCC.0000000000000765. Pubmed: 27243415.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ostahowski PJ, et al. Variation in seizure prophylaxis in severe pediatric traumatic brain injury. J Neurosurg Pediatr. 2016;18:499–506. https://doi.org/10.3171/2016.4.PEDS1698. Pubmed: 27258588.

    Article  PubMed  Google Scholar 

  82. O’Neill BR, Handler MH, Tong S, Chapman KE. Incidence of seizures on continuous EEG monitoring following traumatic brain injury in children. J Neurosurg Pediatr. 2015;16:167–76. https://doi.org/10.3171/2014.12.PEDS14263. Pubmed: 25955809.

    Article  PubMed  Google Scholar 

  83. Abend NS, et al. Impact of continuous EEG monitoring on clinical management in critically ill children. Neurocrit Care. 2011;15:70–5. https://doi.org/10.1007/s12028-010-9380-z. Pubmed: 20499208.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shahwan A, Bailey C, Shekerdemian L, Harvey AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia. 2010;51:1198–204. https://doi.org/10.1111/j.1528-1167.2009.02517.x. Pubmed: 20163439.

    Article  PubMed  Google Scholar 

  85. Chapman SB, McKinnon L. Discussion of developmental plasticity: factors affecting cognitive outcome after pediatric traumatic brain injury. J Commun Disord. 2000;33:333–44. https://doi.org/10.1016/S0021-9924(00)00029-0. Pubmed: 11001160.

    Article  CAS  PubMed  Google Scholar 

  86. McCauley SR, et al. Recommendations for the use of common outcome measures in pediatric traumatic brain injury research. J Neurotrauma. 2012;29:678–705. https://doi.org/10.1089/neu.2011.1838. Pubmed: 21644810.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araki, T. (2019). Pediatric Neurocritical Care. In: Kinoshita, K. (eds) Neurocritical Care . Springer, Singapore. https://doi.org/10.1007/978-981-13-7272-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7272-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7271-1

  • Online ISBN: 978-981-13-7272-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics