Skip to main content

Computer-Aided Diagnosis of Epilepsy Using Bispectrum of EEG Signals

  • Chapter
  • First Online:
Application of Biomedical Engineering in Neuroscience

Abstract

This chapter aims to analyze the dynamics of brain activity from the electroencephalogram (EEG) signals and classify the seizures that are responsible for epilepsy. Hence, seizure classification is the primary task of this article. In this study, a nonlinear higher-order spectral method is proposed that significantly explore the underlying dynamics of nonstationary EEG signals. Various statistical parameters are measured from the principal region of the higher-order spectra that are subjected to the data reduction technique of the locality sensitive discriminant analysis (LSDA). The LSDA maps the measured features at higher dimensional space and ranks them according to the probability of discrimination. The ranked features are then used as inputs to the support vector machine (SVM) classifier with radial basis function kernel. The proposed algorithm is simulated on the web-available Bonn university database that achieved excellent seizures classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya UR (2013) Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations. Proc Inst Mech Eng H J Eng Med 227(3):234–244

    Article  CAS  Google Scholar 

  2. Acharya UR, Chua CK, Lim TC, Dorithy, Suri JS (2009) Automatic identification of epileptic EEG signals using nonlinear parameters. J Mech Med Biol 9(04):539–553

    Article  Google Scholar 

  3. Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PCA (2011) Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst 21(03):199–211

    Article  PubMed  Google Scholar 

  4. Acharya UR, Sree SV, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Exp Syst Appl 39(10):9072–9078

    Article  Google Scholar 

  5. Alam SS, Bhuiyan MIH (2013) Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Health Inform 17(2):312–318

    Article  PubMed  Google Scholar 

  6. Altunay S, Telatar Z, Erogul O (2010) Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl 37(8):5661–5665

    Article  Google Scholar 

  7. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Article  CAS  Google Scholar 

  8. Bajaj V, Pachori RB (2013) Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed Eng Lett 3(1):17–21

    Article  Google Scholar 

  9. Bao FS, Lie DYC, Zhang Y (2008) A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. In: Tools with artificial intelligence, 2008. ICTAI’08. 20th IEEE international conference on, vol 2. IEEE, Dayton, pp 482–486

    Chapter  Google Scholar 

  10. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhati D, Pachori RB, Gadre VM (2017a) A novel approach for time-frequency localization of scaling functions and design of three-band biorthogonal linear phase wavelet filter banks. Digital Signal Processing 69:309–322

    Article  Google Scholar 

  12. Bhati D, Sharma M, Pachori RB, Gadre VM (2017b) Time-frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digital Signal Processing 62:259–273

    Article  Google Scholar 

  13. Bhattacharyya A, Pachori RB (2017) A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 64(9):2003–2015

    Article  PubMed  Google Scholar 

  14. Bhattacharyya A, Pachori RB, Upadhyay A, Acharya UR (2017) Tunable wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl Sci 7(4):385

    Article  Google Scholar 

  15. Brillinger DR (1965) An introduction to polyspectra. Ann Math Stat 36:1351–1374

    Article  Google Scholar 

  16. Cai D, He X, Zhou K, Han J, Bao H (2007) Locality sensitive discriminant analysis. IJCAI 2007:1713–1726

    Google Scholar 

  17. Chen G (2014) Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Exp Syst Appl 41(5):2391–2394

    Article  Google Scholar 

  18. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  19. Faust O, Acharya UR, Min LC, Sputh BH (2010) Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int J Neural Syst 20(02):159–176

    Article  PubMed  Google Scholar 

  20. Fu K, Qu J, Chai Y, Dong Y (2014) Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control 13:15–22

    Article  Google Scholar 

  21. Fu K, Qu J, Chai Y, Zou T (2015) Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control 18:179–185

    Article  Google Scholar 

  22. Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 54(9):1545–1551

    Article  PubMed  Google Scholar 

  23. Güler NF, Ubeyli ED, Güler I (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications 29(3):506–514

    Article  Google Scholar 

  24. Guo L, Rivero D, Seoane JA, Pazos A (2009) Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. ACM, New York, pp 177–184

    Chapter  Google Scholar 

  25. Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A (2010a) Automatic epileptic seizure detection in EEG based on line length feature and artificial neural networks. J Neurosci Methods 191(1):101–109

    Article  PubMed  Google Scholar 

  26. Guo L, Rivero D, Pazos A (2010b) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193(1):156–163

    Article  PubMed  Google Scholar 

  27. Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A (2011) Automatic feature extraction using genetic programming: An application to epileptic EEG classification. Expert Syst Appl 38(8):10425–10436

    Article  Google Scholar 

  28. Hassan AR, Haque MA (2015) Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain. In: TENCON 2015-2015 IEEE Region 10 Conference. IEEE, pp 1–6. https://doi.org/10.1109/ICMEW.2016.7574707-8

  29. Hassan AR, Siuly S, Zhang Y (2016) Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating. Comput Methods Progr Biomed 137:247–259

    Article  Google Scholar 

  30. Hsu CW, Chang CC, Lin CJ et al (2003) A practical guide to support vector classification. University of National Taiwan, Taipei

    Google Scholar 

  31. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol 454. The Royal Society, London, pp 903–995

    Google Scholar 

  32. Iscan Z, Dokur Z, Demiralp T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 38(8):10499–10505

    Article  Google Scholar 

  33. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain 137(8):2210–2230

    Article  PubMed  PubMed Central  Google Scholar 

  34. Joshi V, Pachori RB, Vijesh A (2014) Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 9:1–5

    Article  Google Scholar 

  35. Kaya Y, Uyar M, Tekin R, Yıldırım S (2014) 1d-local binary pattern based feature extraction for the classification of epileptic EEG signals. Appl Math Comput 243:209–219

    Google Scholar 

  36. Khamis H, Mohamed A, Simpson S (2009) Seizure state detection of temporal lobe seizures by autoregressive spectral analysis of scalp EEG. Clin Neurophysiol 120(8):1479–1488

    Article  CAS  PubMed  Google Scholar 

  37. Kim SH, Faloutsos C, Yang HJ (2013) Coercively adjusted autoregression model for forecasting in epilepsy EEG. Comput Math Methods Med 2013. https://doi.org/10.1155/2013/545613

    Google Scholar 

  38. Kreyszig E (2011) Advanced engineering mathematics. J. Willey & Sons Inc, New York, London

    Google Scholar 

  39. Kumar Y, Dewal M, Anand R (2014) Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image, Video Process 8(7):1323–1334

    Article  Google Scholar 

  40. Kumar TS, Kanhangad V, Pachori RB (2015) Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed Signal Process Control 15:33–40

    Article  Google Scholar 

  41. Labate D, La Foresta F, Morabito G, Palamara I, Morabito FC (2013a) Entropic measures of EEG complexity in Alzheimer’s disease through a multivariate multiscale approach. IEEE Sensors J 13(9):3284–3292

    Article  Google Scholar 

  42. Labate D, Palamara I, Mammone N, Morabito G, La Foresta F, Morabito FC (2013b) SVM classification of epileptic EEG recordings through multiscale permutation entropy. In: Neural Networks (IJCNN), The 2013 International Joint Conference on. IEEE, San Diego, pp 1–5

    Google Scholar 

  43. Lee SH, Lim JS, Kim JK, Yang J, Lee Y (2014) Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput Methods Progr Biomed 116(1):10–25

    Article  Google Scholar 

  44. Li S, Zhou W, Yuan Q, Geng S, Cai D (2013) Feature extraction and recognition of ictal EEG using EMD and SVM. Comput Biol Med 43(7):807–816

    Article  PubMed  Google Scholar 

  45. Mammone N, Principe JC, Morabito FC, Shiau DS, Sackellares JC (2010) Visualization and modeling of STLmax topographic brain activity maps. J Neurosci Methods 189(2):281–294

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 39(1):202–209

    Article  Google Scholar 

  47. Nikias CL, Mendel JM (1993) Signal processing with higher-order spectra. IEEE Signal Process Mag 10(3):10–37

    Article  Google Scholar 

  48. Nikias CL, Petropulu AP (1993) Higher-order spectra analysis: a nonlinear signal processing framework. PTR Prentice Hall, Englewood Cliffs

    Google Scholar 

  49. Nikias CL, Raghuveer MR (1987) Bispectrum estimation: A digital signal processing framework. Proc IEEE 75(7):869–891

    Article  Google Scholar 

  50. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036

    Article  Google Scholar 

  51. Orhan U, Hekim M, Ozer M (2011) Eeg signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38(10):13475–13481

    Article  Google Scholar 

  52. Oweis RJ, Abdulhay EW (2011) Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed Eng Online 10(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pachori RB (2008) Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Lett Signal Process 2008:14

    Article  Google Scholar 

  54. Pachori RB, Bajaj V (2011) Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput Methods Prog Biomed 104(3):373–381

    Article  Google Scholar 

  55. Pachori RB, Patidar S (2014) Epileptic seizure classification in EEG signals using a second-order difference plot of intrinsic mode functions. Comput Methods Prog Biomed 113(2):494–502

    Article  Google Scholar 

  56. Pachori RB, Sharma R, Patidar S (2015) Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. In: Complex system modeling and control through intelligent soft computations. Springer, Cham, pp 367–388

    Google Scholar 

  57. Pati S, Alexopoulos AV (2010) Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies. Cleve Clin J Med 77(7):457–567

    Article  PubMed  Google Scholar 

  58. Patidar S, Panigrahi T (2017) Detection of epileptic seizure using kraskov entropy applied on tunable-q wavelet transform of EEG signals. Biomed Signal Process Control 34:74–80

    Article  Google Scholar 

  59. Peker M, Sen B, Delen D (2016) A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J Biomed Health Inform 20(1):108–118

    Article  PubMed  Google Scholar 

  60. Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026

    Google Scholar 

  61. Polat K, Güneş S (2008a) Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis, and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Systems with Applications 34(3):2039–2048

    Article  Google Scholar 

  62. Polat K, Güneş S (2008b) A novel data reduction method: distance-based data reduction and its application to classification of epileptiform EEG signals. Appl Math Comput 200(1):10–27

    Google Scholar 

  63. Pradhan N, Dutt DN (1994) Data compression by a linear prediction for storage and transmission of EEG signals. Int J Bio-Med Comput 35(3):207–217

    Article  CAS  Google Scholar 

  64. Rosenblatt M, Van Ness JW et al (1965) Estimation of the bispectrum. Ann Math Stat 36(4):1120–1136

    Article  Google Scholar 

  65. Samiee K, Kovacs P, Gabbouj M (2015) Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform. IEEE Trans Biomed Eng 62(2):541–552

    Article  PubMed  Google Scholar 

  66. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech 27:379–423

    Article  Google Scholar 

  67. Sharma R, Pachori RB (2015) Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl 42(3):1106–1117

    Article  Google Scholar 

  68. Sharma M, Pachori RB (2017a) A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension. J Mech Med Biol 17(07):1740003

    Article  Google Scholar 

  69. Sharma RR, Pachori RB (2017b) Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals. IET Sci Meas Technol 12(1):72–82

    Article  Google Scholar 

  70. Sharma M, Pachori RB, Acharya UR (2017) A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recogn Lett 94:172–179

    Article  Google Scholar 

  71. Sharma R, Sircar P, Pachori RB (2019a) A new technique for classification of focal and nonfocal EEG signals using higher-order spectra. J Mech Med Biol 19(01):1940010

    Article  Google Scholar 

  72. Sharma R, Sircar P, Pachori RB, Bhandary SV, Acharya UR (2019b) Automated glaucoma detection using a center slice of higher order statistics. J Mech Med Biol 19(01):1940011

    Article  Google Scholar 

  73. Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee HN (2015) Noise robustness analysis of sparse representation based classification method for nonstationary EEG signal classification. Biomed Signal Process Control 21:8–18

    Article  Google Scholar 

  74. Spiegel RM, Murray R, Stephens LJ (1999) Theory and problems of statistics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  75. Srinivasan V, Eswaran C, Sriraam N (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29(6):647–660

    Article  CAS  PubMed  Google Scholar 

  76. Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 11(3):288–295

    Article  PubMed  Google Scholar 

  77. Subasi A (2007) Eeg signal classification using wavelet feature extraction and amixture of expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  78. Subasi A, Gursoy MI (2010) Eeg signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666

    Article  Google Scholar 

  79. Tao Z, Wan-Zhong C, Ming-Yang L (2016) Automatic seizure detection of electroencephalogram signals based on frequency slice wavelet transform and support vector machine. Acta Phys Sin 65(3):038703

    Google Scholar 

  80. Tiwari AK, Pachori RB, Kanhangad V, Panigrahi BK (2017) Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE J Biomed Health Inform 21(4):888–896

    Article  PubMed  Google Scholar 

  81. Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007:80510

    Article  PubMed Central  Google Scholar 

  82. Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    Article  PubMed  Google Scholar 

  83. Ubeyli ED (2010) Least squares support vector machine employing model-based methods coefficients for the analysis of EEG signals. Expert Syst Appl 37(1):233–239

    Article  Google Scholar 

  84. Uthayakumar R, Easwaramoorthy D (2013) Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals 21(02):1350011

    Article  Google Scholar 

  85. Vapnik V (2013) The nature of statistical learning theory. Springer Science &Business Media, New York

    Google Scholar 

  86. Wang D, Miao D, Xie C (2011) Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 38(11):14314–14320

    Google Scholar 

  87. Wang S, Chaovalitwongse WA, Wong S (2013) Online seizure prediction using an adaptive learning approach. IEEE Trans Knowl Data Eng 25(12):2854–2866

    Article  Google Scholar 

  88. Webber W, Lesser RP, Richardson RT, Wilson K (1996) An approach to seizure detection using an artificial neural network (ann). Electroencephal Clin Neurophysiol 98(4):250–272

    Article  CAS  Google Scholar 

  89. Weston J, Watkins C et al (1999) Support vector machines for multi-class pattern recognition. Esann 99:219–224

    Google Scholar 

  90. WHO (2015) Epilepsy report by world health organization. URL http://www.who.int/en/news-room/fact-sheets/detail/epilepsy

  91. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(01):1–41

    Article  Google Scholar 

  92. Yuan Q, Zhou W, Li S, Cai D (2011) Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96(1-2):29–38

    Article  PubMed  Google Scholar 

  93. Zhang Z, Zhou Y, Chen Z, Tian X, Du S, Huang R (2013) Approximate entropy and support vector machines for electroencephalogram signal classification. Neural Regen Res 8(20):18–44

    Google Scholar 

  94. Zhang T, Chen W, Li M (2017) Ar based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed Signal Process Control 31:550–559

    Article  Google Scholar 

  95. Zhou W, Liu Y, Yuan Q, Li X (2013) Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 60(12):3375–3381

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Sircar, P., Pachori, R.B. (2019). Computer-Aided Diagnosis of Epilepsy Using Bispectrum of EEG Signals. In: Paul, S. (eds) Application of Biomedical Engineering in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-13-7142-4_10

Download citation

Publish with us

Policies and ethics