Skip to main content

Employing Cytoskeletal Treadmilling in Bio-actuators

  • Chapter
  • First Online:
Soft Actuators

Abstract

In this chapter, we describe bio-actuators consisting of cytoskeletal proteins capable of exhibiting treadmilling. The treadmilling is realized by formation of a filamentous protein complex through the addition of unit proteins at one end and dissociation at the other end accompanying a sequence of nucleotide triphosphate hydrolysis. We have demonstrated the creation of hydrogels that autonomously oscillate owing to the treadmilling of actin or tubulin and even have the capability of being driven by walking motor proteins. These hydrogels have great potential as bio-actuators because they are easy to make on a centimeter scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland Science, New York

    Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  3. Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158

    Article  CAS  Google Scholar 

  4. Vale RD, Reese TS, Sheetz MP (1985) Ientification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  CAS  Google Scholar 

  5. Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31

    Article  CAS  Google Scholar 

  6. Bagshaw CR (1993) Muscle contraction, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  7. Berg HC (2003) The Rotary Motor of Bacterial Flagella. Annu Rev Biochem 72:19–54

    Article  CAS  Google Scholar 

  8. Vallee RB (ed) (1991) Molecular motors and the cytoskeleton, in methods in enzymology, vol 196. Academic, San Diego

    Google Scholar 

  9. Diehl MR, Zhang KC, Lee HJ, Tirrell DA (2006) Engineering cooperativity in biomotor-protein assemblies. Science 311:1468–1471

    Article  CAS  Google Scholar 

  10. Hess H, Clemmens J, Brunner C, Doot R, Luna S, Ernst KH, Vogel V (2005) Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett 5:629–633

    Article  CAS  Google Scholar 

  11. Kakugo A, Shikinaka K, Matsumoto K, Gong JP, Osada Y (2003) Growth of large polymer-actin complexes. Bioconjug Chem 14:1185–1190

    Article  CAS  Google Scholar 

  12. Kawamura R, Kakugo A, Shikinaka K, Osada Y, Gong JP (2008) Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9:2277–2282

    Article  CAS  Google Scholar 

  13. Sheterline P, Clayton J, Sparrow JC (1998) Actin, 4th edn. Oxford University Press, New York

    Google Scholar 

  14. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  Google Scholar 

  15. Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and Formins. Annu Rev Biophys Biomol Struct 36:451–477

    Article  CAS  Google Scholar 

  16. Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113:155–160

    Article  CAS  Google Scholar 

  17. Frederiksen DW, Cunningham LW (eds) (1982) Structural and contractile proteins, part B: the contractile apparatus and the cytoskeleton, in methods in enzymology, vol 85. Academic, San Diego

    Google Scholar 

  18. Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754

    Article  CAS  Google Scholar 

  19. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  CAS  Google Scholar 

  20. Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14:996

    Article  CAS  Google Scholar 

  21. Mahadevan L, Matsudaira P (2000) Motility powered by supramolecular springs and ratchets. Science 288:95–99

    Article  CAS  Google Scholar 

  22. Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR (2005) Force production by disassembling microtubules. Nature 438:384

    Article  CAS  Google Scholar 

  23. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  Google Scholar 

  24. Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605

    Article  CAS  Google Scholar 

  25. Fygenson DK, Braun E, Libchaber A (1994) Phase diagram of microtubules. Phys Rev E 50:1579–1588

    Article  CAS  Google Scholar 

  26. Tanaka-Takiguchi Y, Kakei T, Tanimura A, Takagi A, Honda M, Hotani H, Takiguchi K (2004) The elongation and contraction of actin bundles are induced by double-headed myosins in a motor manner concentration-dependant manner. J Mol Biol 341:467–476

    Article  CAS  Google Scholar 

  27. Pantaloni D, Clainche CL, Carlier M-F (2001) Mechanism of actin-based motility. Science 292:1502–1506

    Article  CAS  Google Scholar 

  28. Tilney LG, Portnoy DA (1989) Actin-filaments and the growth, movement, and spread of the intracellular bacterial parasite, listeria-monocytogenes. J Cell Biol 109:1597–1608

    Article  CAS  Google Scholar 

  29. Sano K, Kawamura R, Tominaga T, Oda N, Ijiro K, Osada Y (2011) Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12:4173–4177

    Article  CAS  Google Scholar 

  30. Sano K, Kawamura R, Tominaga T, Nakagawa H, Oda N, Ijiro K, Osada Y (2011) Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12:1409–1413

    Article  CAS  Google Scholar 

  31. Osada Y, Kawamura R, Sano K-I (2016) Hydrogels of cytoskeletal proteins – preparation, structure, and emergent functions. Springer, Cham

    Book  Google Scholar 

  32. Kawamura R, Sano KI, Ijiro K, Osada Y (2014) Chemically cross-linked microtubule assembly shows enhanced dynamic motions on kinesins. RSC Adv 4:32953–32959

    Article  CAS  Google Scholar 

  33. Kawamura R, Uehara D, Kobayashi N, Nakabayashi S, Yoshikawa HY (2016) Kinesin-driven active substrate giving stochastic mechanical stimuli to cells for characterization. ACS Biomater Sci Eng 2:2333–2338

    Article  CAS  Google Scholar 

  34. Dumont ELP, Do C, Hess H (2015) Molecular wear of microtubules propelled by surface-adhered kinesins. Nat Nanotechnol 10:166

    Article  CAS  Google Scholar 

  35. Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L, Bowick MJ, Marchetti MC, Dogic Z, Bausch AR (2014) Topology and dynamics of active nematic vesicles. Science 345:1135–1139

    Article  CAS  Google Scholar 

  36. Okeyoshi K, Kawamura R, Yoshida R, Osada Y (2015) Microtubule teardrop patterns. Sci Rep 5:9581

    Article  CAS  Google Scholar 

  37. Okeyoshi K, Kawamura R, Yoshida R, Osada Y (2014) Thermo- and photo-enhanced microtubule formation from Ru(bpy)32+-conjugated tubulin. J Mater Chem B 2:41–45

    Article  CAS  Google Scholar 

  38. Okeyoshi K, Kawamura R, Yoshida R, Osada Y (2015) Effect of microtubule polymerization on photoinduced hydrogen generation. Chem Commun 51:11607–11610

    Article  CAS  Google Scholar 

  39. Hess H, Ross JL (2017) Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 46:5570–5587

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Actin and microtubule hydrogel studies were supported in part by Toyota Motor Corporation and a KAKENHI grant from the Japan Society for Promotion of Science to K-I. S. (20681013, 23570181) and to R.K. (15 K17451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuzo Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawamura, R., Sano, KI., Osada, Y. (2019). Employing Cytoskeletal Treadmilling in Bio-actuators. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_40

Download citation

Publish with us

Policies and ethics