Skip to main content

Dielectric Elastomers

  • Chapter
  • First Online:
Soft Actuators

Abstract

Electroactive polymer (EAP) is a new actuation technology with exceptional performance. An especially attractive type of electroactive polymer is dielectric elastomer (DE).

DE, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, a fast response time, and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of DEs include artificial muscle actuators for robots (especially mobile and biomimetic robots on land, sea, and air); low-cost, lightweight linear actuators; inchworms, micro light scanners, and microfluidics, solid-state optical devices; diaphragm actuators for pumps, displays, and smart skins; acoustic actuators; and rotary motors. Dielectric elastomers may also be used to generate electrical power from mechanical deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pelrine R, Chiba S (1992) Review of artificial muscle approaches. In: Proceedings of third international symposium on micromachine and human science, Nagoya, Japan

    Google Scholar 

  2. Pelrine R, Kornbluh R, Chiba S et al (1999) High-field deformation of elastomeric dielectrics for actuators. In: Proceedings 6th SPIE symposium on smart structure and materials, vol 3669, pp 149–161

    Google Scholar 

  3. Oguro K., Fujiwara N, Asaka K, Onishi K, Sewa S (1999) Polymer electrolyte actuator with gold electrodes. In: Proceedings of the SPIE’s 6th annual international symposium on smart structures and materials, SPIE of proceedings, vol 3669, pp 64–71

    Google Scholar 

  4. Otero TF, Sansiñena JM (1998) Soft and wet conducting polymers for artificial muscles. Adv Mater 10(6):491–494

    Article  CAS  Google Scholar 

  5. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Article  CAS  Google Scholar 

  6. Tomori H et al (2011) Theoretical comparison of McKibben-type artificial muscle and novel straight-fiber-type artificial muscle. Int J Autom Technol 5(4):544

    Article  Google Scholar 

  7. Chiba S (2010) Application development of artificial muscle actuators. Electron Mater 49(7):34–41

    Google Scholar 

  8. Kornbluh R, Pelrine R, Chiba S (2004) Silicon to silicon: stretching the capabilities of micromachines with electroactive polymers. IEEJ Trans SM 124(8):266–271

    Article  Google Scholar 

  9. Chiba S, Waki M, Kormbluh R, Pelrine R (2008) Innovative power generators for energy harvesting using electroactive polymer artificial muscles. In Bar-Cohen Y (ed) Electroactive polymer actuators and devices (EAPAD) 2008, Proceedings of SPIE, vol 6927, 692715 (1–9)

    Google Scholar 

  10. Chiba S, Stanford S, Pelrine R, Kornbluh R, Prahlad H (2006) Electroactive polymer artificial muscle. JRSJ 24(4):38–42

    Article  Google Scholar 

  11. Chiba S et al (2016) Elastomer transducers. In: Advances in science and technology. Trans Tech Publication, Switzerland, vol 97, pp 61–74. https://doi.org/10.4028/wwwscienctific.net/AST.97.61. ISSN: 1662-0356

  12. Chiba S (2002) MEMS and NEMS applications of dielecric elastomer and future trends. Electron Packag Technol 18(1):32–38

    Google Scholar 

  13. Chiba S (2017) Chapter 1: Dielectric elastomer actuators. In: Development of soft actuators and application, control technology for practical application, CMC Press, Japan, pp 9–21

    Google Scholar 

  14. Kornbluh R, Bashkin J, Pelrine R, Prahlad H, Chiba S (2004) Medical applications of new electroactive polymer artificial muscles. Seikei-Kakou 16(10):631–637

    CAS  Google Scholar 

  15. Chiba S (2014) Chapter 13: Dielectric elastomers. In: Soft actuators, Springer, Japan

    Google Scholar 

  16. Zhou J, Jiang L, Khayat R (2016) Dynamic analysis of a tunable viscoelastic dielectric elastomer oscillator under external excitation. Smart Mater Struct 25(2):025005

    Article  Google Scholar 

  17. Ashida K, Ichiki M, Tanaka M, Kitahara T (2000) Power generation using piezo element: energy conversion efficiency of piezo element. In: Proceedings of JAME annual meeting, pp 139–40

    Google Scholar 

  18. Zurkinden A, Campanile F, Martinelli L (2007) Wave energy converter through piezoelectric polymers. In: Proceedings COMSOL user conference 2007, Grenoble, France

    Google Scholar 

  19. Jean-Mistral C, Basrour S, Chaillout J (2010) Comparison of electroactive polymer for energy scavenging applications. Smart Mater Struct 19(19):085012

    Article  Google Scholar 

  20. Chiba S, Waki M, Wada T, Hirakawa Y, Masuda K, Ikoma T (2013) Consistent Ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators. Appl Energy 104:497–502. ISSN 0306-2619

    Article  CAS  Google Scholar 

  21. Waki M, Chiba S, Song Z, Ohyama K, Shijie Z (2017) Experimental investigation on the power generation performance of dielectric elastomer water power generation mounted on a square type floating body. J Mater Sci Eng B 7(9–10):179–186. https://doi.org/10.17265/2161-6221/2017.9-10.001

    Article  Google Scholar 

  22. Chiba S, Hasegawa K, Waki M, Kurita S (2017) Experimental study on the motion of floating bodies arranged in series for wave power generation. J Mater Sci Eng A 7(11–12):281–289. https://doi.org/10.17265/2161-6213/2017.11-12.001

    Article  Google Scholar 

  23. Chiba S et al (2007) Extending applications of dielectric elastomer artificial muscle. In: Proceedings of SPIE, San Diego, March 18–22

    Google Scholar 

  24. Chiba S, Pelrine R, Kornbluh R, Prahlad H, Stanford S, Eckerle J (2007) New opportunities in electric power generation using electroactive polymers (EPAM). J Jpn Inst Energy 86(9):743–737

    Article  CAS  Google Scholar 

  25. Chiba S, Hasegawa K, Waki M, Fujita K, Ohyama K, Shijie Z (2017) Innovative elastomer transducer driven by karman vortices in water flow. J Mater Sci Eng A 7(5–6):121–135. https://doi.org/10.17265/2161-6213/2017.5-6.002

    Article  Google Scholar 

  26. Chiba S, Kornbluh R, Pelrine R, Waki M (2008) Low-cost hydrogen production from electroactive polymer artificial muscle wave power generators. In: Proceedings of world hydrogen energy conference 2008, Brisbane, Australia, June 16–20, 2008

    Google Scholar 

  27. Chiba S et al (2007) Electroactive polymer artificial muscles. Eco design 2007, Japan, 2007–12

    Google Scholar 

  28. Chiba S, Waki M, Fujita K, Masuda K, Ikoma T (2017) Simple and robust direct drive water power generation system using dielectric elastomers. J Mater Sci Eng B7(1–2):39–47. https://doi.org/10.17265/2161-6213/2017.1-2.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiki Chiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiba, S. (2019). Dielectric Elastomers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_14

Download citation

Publish with us

Policies and ethics