Skip to main content

Parffinic Biofuels: HVO, BTL Diesel, and Farnesane

  • Chapter
  • First Online:
Application of Liquid Biofuels to Internal Combustion Engines

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Of various paraffinic (alkane) biofuels, the application of hydrotreated vegetable oil (HVO), biomass-to-liquid (BTL) diesel, and farnesane except biojet fuels to compression ignition engines will be discussed in this chapter. The property, fundamental combustion studies, and combustion and emission characteristics of neat paraffinic biofuels and blends with diesel or biodiesel will be analyzed. The interest in using these new renewable non-oxygenated fuels is recently increased. The serious shortcomings of biodiesel in terms of cold start, fuel stability, and cloud point can be overcomes by using HVO. Further, the use of neat HVO and HVO blends with diesel contributes to a reduction of regulated and unregulated emissions and of greenhouse gas from both heavy-duty and light-duty CI engines. One of the most promising options to obtain transportation fuels from biomass is BTL, the liquid biofuel produced by Fischer–Tropsch synthesis using lignocellulosic biomass as the feedstock. Farnesane can be produced from the fermentation of biomass-derived sugars. Little information is available for the utilization of farnesane in CI engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ail, S.S., and Dasappa, A.S. 2016. Biomass to liquid transportation fuel via Fischer Tropsch synthesis–technology review and current scenario. Renew. Sustain. Energy Rev. 58, 267–286.

    Article  Google Scholar 

  • Anwar, A., and Garforth, A. 2016. Challenges and opportunities of enhancing cold flow properties of biodiesel via heterogeneous catalysis. Fuel 173, 189–208.

    Article  Google Scholar 

  • Armas, O., Garcia-Contreras, R., and Ramos, A. 2016. On-line thermodynamic diagnosis of diesel combustion process with paraffinic fuels in a vehicle tested under NEDC. J. Clean. Prod. 138, 94–102.

    Article  Google Scholar 

  • Armas, O., Garcia-Contreras, R., Ramos, A., and Lopez, A.F. 2015. Impact of animal fat biodiesel, GTL, and HVO fuels on combustion, performance, and pollutant emissions of a light-duty diesel vehicle tested under the NEDC. J. Energy Eng. 141, C4014009.

    Google Scholar 

  • Bergthorson, J.M., and Thomson, M.J. 2015. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew. Sustain. Energy Rev. 42, 1393–1417.

    Article  Google Scholar 

  • Betha, R., Russell, L.M., Sanchez, K.J., and Cocker, D. 2016. Lower NOx but higher particle and black carbon emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol. Sci. Technol. 51(2), 123–134.

    Article  Google Scholar 

  • Bezaire, N., Wadumesthrige, K., Ng, K.Y.S., and Salley, S.O. 2010. Limitations of the use of cetane index for alternative compression ignition engine fuels. Fuel 89, 3807–3813.

    Article  Google Scholar 

  • Bezergianni, S., and Chrysikou, L.P. 2012. Oxidative stability of waste cooking oil and white diesel upon storage at room temperature. Biores. Technol. 126, 341–344.

    Article  Google Scholar 

  • Bezergianni, S., and Dimitriadis, A. 2013. A comparison between different types of renewable diesel. Renew. Sustain. Energy Rev. 21, 110–116.

    Article  Google Scholar 

  • Bezergianni, S., Dimitriadis, A., and Chrysikou, L.P. 2014. Quality and sustainability comparison of one- vs. two-sept catalytic hydroprocessing of waste cooking oil. Fuel 118, 300–307.

    Article  Google Scholar 

  • Bhardwaj, O.P., Kolbeck, A.F., Kkoerfer, T., and Honkanen, M. 2013. Potential of hydrotreated vegetable oil (HVO) in future high efficiency combustion system. SAE technical paper 2013-01-1677.

    Google Scholar 

  • Bhardwaj, O.P., Luers, B., Holderbaum, B., Koerfer, T., Pischinger, S., and Honkanen, M. 2014. Utilization of HVO fuel properties in a high efficiency combustion system: part 2: relationship of soot characteristics with its oxidation behavior in DPF. SAE technical paper 2014-01-2846.

    Google Scholar 

  • Bhardwaj, O.P., Luers, B., Holderbaum, B., Korfer, T., Pischinger, S., and Honkanen, M. 2015. Utilization of HVO fuel properties in a high efficiency combustion systems. Int. J. Automot. Eng. 6(2), 75–82.

    Google Scholar 

  • Birzietis, G., Pirs, V., Dukulis, I., and Gailis, M. 2017. Effect of commericial diesel fuel and hydrotreated vegetable oil blend on automobile performance. Agron. Res. 15(S1), 964–970.

    Google Scholar 

  • Bohl, T., Smallbone, A., Tian, G., and Roskilly, A.P. 2018. Particular matter and NOx trade-off comparisons between HVO and mineral diesel in HD applications. Fuel 215, 90–101.

    Article  Google Scholar 

  • Bohl, T., Tian, G., Smallbone, A., and Roskilly, A.P. 2017. Macroscopic spray characteristics of next-generation bio-derived diesel fuels in comparison to mineral diesel. Appl. Energy 186, 562–573.

    Article  Google Scholar 

  • Bugarski, A.D., Hummer, J.A., and Vanderslice, S. 2016. Effects of hydrotreated vegetable oil on emissions of aerosols and gases from light-duty and medium-duty older technology engines. J. Occup. Environ. Hyg. 13, 293–302.

    Article  Google Scholar 

  • Chen, P.-C., Wang, W.-C., Roberts, W.L., and Fang, T. 2013. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel 103, 850–861.

    Article  Google Scholar 

  • Conconi, C.C., and Crnkovic, P.M. 2013. Thermal behavior of renewable diesel from sugar cane, biodiesel, fossil diesel and their blends. Fuel Process. Technol. 114, 6–11.

    Article  Google Scholar 

  • Conconi, C.C., and Crnkovic, P.M. 2014. Correlation between CO2 emission and apparent activation energy of renewable fuels and their blends. SAE technical paper 2014-36-0238.

    Google Scholar 

  • Conconi, C.C., Machado, A.G., Barros, J., Pereira, B.M., Cortezi, R.P., and Crnkovic, P.M. 2013. Correlation between apparent activation energy and NOx emission of renewable diesel from sugar cane, biodiesel, fossil diesel and their blends. SAE technical paper 2013-36-0249.

    Google Scholar 

  • Cowart, J., Hamilton, L., Williams, S., and McDaniel, A. 2013. Alternative diesel fuel combustion acceptance criteria for new fuels in legacy diesel engines. SAE technical paper 2013-01-1135.

    Google Scholar 

  • Demirbas, A., and Dincer, K. 2008. Sustainable green diesel: a futuristic view. Energy Sources Part A 30, 1233–1241.

    Article  Google Scholar 

  • Diaz, J.A., de la Osa, A.R., Sanchez, P., Romero, A., and Valverde, J.L. 2014. Influence of CO2 co-feeding on Fisher–Tropsch fuels production over carbon nanofibers supported cobalt catalyst. Catalysis Communications 44, 57–61.

    Article  Google Scholar 

  • Dickerson, T., McDaniel, A., Williams, S., Luning-Prak, D., Hamilton, L., and Bermudez, E. et al. 2015. Start-up and steady-state performance of a new reneable alcohol-to-jet (ATJ) fuel in multiple diesel engines. SAE technical paper 2015-01-0901.

    Google Scholar 

  • Drenth, A.C., Olsen, D.B., Cabot, P.E., and Johnson, J.J. 2014. Compression ignition engine performance and emission evaluation of industrial oilseed biofuel feedstocks camelina, carinata, and pennycress across three fuel pathways. Fuel 136, 143–55.

    Article  Google Scholar 

  • Drenth, A.C., Olsen, D.B., and Denef, K. 2015. Fuel property quantification of triglyceride blends with an emphasis on industrial oilseeds camelina, carinata, and pennycress. Fuel 153, 19–30.

    Article  Google Scholar 

  • Ewphun, P.-P., Vo, C.T., Srichai, P., Charoenphonphanich, C., Sato, S., and Kosaka, H. 2017. Combustion characteristics of hydrotreated vegetable oil-diesel blend under EGR and superheated conditions. Int. J. Automot. Technol. 28(4), 643–652.

    Google Scholar 

  • Fabulic Ruszkowski, M., Telen, S., Polak, V.M., Knezovic, I.C., Erceg, A., and Tomic, T. et al. 2014. Testing of hydrotreated vegetable oil as biocomponent in diesel fuel. goriva i maziva 53(4),329–341.

    Google Scholar 

  • Fagernas, L., Brammer, J., Wilen, C., Lauer, M., and Verhoeff, F. 2010. Drying of biomass for second generation synfuel production. Biomass Bioenergy 34, 1267–1277.

    Article  Google Scholar 

  • Flora, G., Balagurunathan, J., Saxena, S., Cain, J.P., Kahandawala, M.S.P., and DeWitt, M.J. et al. 2017. Chemical ignition delay of candidate drop-in replacement jet fuels under fuel-lean conditions: a shock tube study. Fuel 209, 457–472.

    Article  Google Scholar 

  • Fu, J., and Turn, S.Q. 2014. Characteristics and stability of neat and blended hydroprocessed renewable diesel. Energy Fuels 28, 3899–3907.

    Article  Google Scholar 

  • Gill, S.S., Tsolakis, A., Dearn, K.D., and Rodriguez-Fernandez, J. 2011. Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Prog. Energy Combust. Sci. 37(2011), 503–523.

    Article  Google Scholar 

  • Gomez, A., Soriano, J.A., and Armas, O. 2016. Evaluation of sooting tendency of different oxygenated and paraffinic fuels blended with diesel fuel. Fuel 184, 536–543.

    Article  Google Scholar 

  • Gowdagiri, S., Cesari, X.M., Huang, M., and Oehlschlaeger, M.A. 2014. A diesel engine study of conventional and alternative diesel and jet fuels: ignition and emissions characteristics. Fuel 136, 253–260.

    Article  Google Scholar 

  • Groendyk, M., and Rothamer, D. 2017. Effect of increased fuel volatility on CDC operation in a light-duty CIDI engine. Fuel 194, 195–210.

    Article  Google Scholar 

  • Guo, H., Neill, W.S., Chippior, W., and Gieleciak, R. 2014. Effect of renewable diesel and jet blending components on combustion and emissions performance of a HCCI engine. In Proceedings of ASME 2014 ICE Division Fall Technical Conference, 19–22 Oct 2014. Columbus, IN, USA. ICEF 2014, p. 5472.

    Google Scholar 

  • Gutierres-Antonio, C., Gomez-Castro, F.I., De Lira-Flores, J.A., and Hernandez, S. 2017. A review on the production processes of renewable jet fuel. Renew. Sustain. Energy Rev. 79, 709–729.

    Google Scholar 

  • Gysel, N.R., Russell, R.L., Welch, W.A., Cocker, D.R., and Ghosh, S. 2014. Impact of sugarcane renewable fuel on in-use gaseous and particulate matter emissions from a marine vessel. Energy Fuels 28, 4177–4182.

    Article  Google Scholar 

  • Hamilton, L., Luning-Prak, D., Cowart, J., McDaniel, A., Williams, S., and Leung, R. 2014. Direct sugar to hydrocarbon (DSH) fuel performance evaluation in multiple diesel engines. SAE technical paper 2014-01-1472.

    Google Scholar 

  • Happonen, M., Heillila, J., Aakko-Saksa, P., Murtonen, T., Lehto, K., Rostedt, A., Sarjovaara, T., Marmi, M., Keskinen, J., and Virtanen, A. 2013. Diesel exhaust emissions and particle hygroscopicity with HVO fuel-oxygenate blend. Fuel 103, 380–386.

    Article  Google Scholar 

  • Hartikka, T., Kuronen, M., and Kiiski, U. 2012. Technical performance of HVO (hydrotreated vegetable oil) in diesel engines. SAE technical paper 2012-01-1585.

    Google Scholar 

  • Heikkilla, J., Happonen, M., Murtonen, T., Lehto, K., Sarjovaara, T., and Larmi, M. et al. 2012. Study of miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine. J. Air Waste Manage. Assoc. 62, 1305–1312.

    Google Scholar 

  • Hemanandh, J., and Narayanan, K.V. 2017. Production of green diesel by hydrotreatment using Jatropha oil: performance and emission analysis. Waste Biomass Valor 8, 1931–1939.

    Article  Google Scholar 

  • Heuser, B., Vauhkonen, V. Mannonen, S. Rohs, H., and Kolbeck, A. 2013. Crude tall oil-based renewable diesel as a blending component in passenger car diesel engines. SAE technical paper 2013-01-2685.

    Google Scholar 

  • Hiroyasu, H., Kadota, T., and Arai, M. 1980. Fuel spray characterization in diesel engines. In: Mattavi, J.N. and Amann, C.A. (eds.) Combustion modeling in reciprocating engines. Plenum Press, New York, pp. 369–408.

    Google Scholar 

  • Hochhauser, A.M. 2009. Review of prior studies of fuel effects on vehicle emissions. SAE technical paper 2009-01-1181.

    Google Scholar 

  • Hoekman, S.J., Broch, A., Robbins, C., Ceniceros, E., and Natarajan, M. 2012. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16, 143–169.

    Article  Google Scholar 

  • Hsieh, P.Y., Widegren, J.A., Fortin, T.J., and Bruno, T.J. 2014. Chemical and thermophysical characterization of an algae-based hydrotreated renewable diesel fuel. Energy Fuels 28, 3192–3205.

    Article  Google Scholar 

  • Huber, G.W., Connor, P.P., and Corma, A. 2007. Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A Gen. 329, 120–129.

    Article  Google Scholar 

  • Hulkkonen, T., Hillamo, H., Sarjovaara, T., and Larmi, M. 2011. Experimental study of spray characteristics between hydrotreated vegetable oil (HVO) and crude oil based EN 590 diesel fuel. SAE technical paper 2011-24-0042.

    Google Scholar 

  • Iribarren, D., Susmozas, A., and Dufour, J. 2013. Life-cycle assessment of Fischer–Tropsch products from biosyngas. Renew. Energy 59, 229–236.

    Article  Google Scholar 

  • Jalava, P.I., Aakko-Saksa, P., Murtonen, T., Happo, M.S., Markkanen, A., and Yli-Pirilä, P. et al. 2012. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas. Part Fibre Toxicol. 9, 37.

    Article  Google Scholar 

  • Janecek, D., Rothamer, D., and Ghandhi, J. 2016. Fuel-substitution method for investigating the kinetics of low-volatility fuels under engine like operating conditions. Energy Fuels 30, 1400–1406.

    Google Scholar 

  • Jaroonjitsathian, S., Saisirirat, P., Sivara, K., Tongroon, M., and Cholaacoop, N. 2014. Effects of GTL and HVO blended fuels on combustion and exhaust emissions of a common-rail DI diesel technology. SAE technical paper 2014-01-2763.

    Google Scholar 

  • Jaroonjitsathian, S., Tipdecho, C., Sukajit, P., Namthirach, N., and Suppatvech, S. 2013. Bio-hydrogenated diesel(BHD): renewable fuel for advanced diesel technology. SAE technical paper 2013-01-0070.

    Google Scholar 

  • Jing, W., Wu, Z., Roberts, W.L., and Fang, T. 2016. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant combustion chamber. Fuel 181, 718–728.

    Article  Google Scholar 

  • Jing, W., Wu, Z., Zhang, W., and Fang, T. 2015. Measurements of soot temperature and KL factor for spray combustion of biomass derived renewable fuels. Energy 91, 758–771.

    Article  Google Scholar 

  • Karavalakis, G., Jiang, Y., Yang, J., Durbin, T., Nuottimaki, J., and Lehto, K. 2016. Emissions and fuel economy evaluation from two current technology heavy-duty trucks operated on HVO and FAME blends. SAE technical paper 2016-01-0876.

    Google Scholar 

  • Karonis, D., Chilari, D., and Manou, C. 2014. Characterization of hydroprocessed used cooking oils in blend with low quality gasoil samples. SAE technical paper 2014-01-1468.

    Google Scholar 

  • Kim, D., Kim, S., Oh, S., and No, S.-Y. 2014. Engine performance and emission characteristics of hydrotreated vegetable oil in light duty diesel engines. Fuel 125, 36–43.

    Article  Google Scholar 

  • Knothe, G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36, 364–373.

    Article  Google Scholar 

  • Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E., and Lycourghiotis, A. 2016. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Appl. Catal. B: Environ. 181, 156–196.

    Article  Google Scholar 

  • Kousoulidou, M., Dimaratos, A., Karvountzis-Kontakiotis, A.K., and Samaras, Z. 2014. Combustion and emissions of a common-rail diesel engine fueled with HWCO. J. Energy Eng. 140(3), A4013001.

    Google Scholar 

  • Kuang, X.M., Scott, J.A., Da Rocha, G.O., Betha, R., Price, D.J., and Russell, L.M. et al. 2017. Hydroxyl radical formation and so luble trace metal content in particulate matter from renewable diesel and ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol. Sci. Technol. 51(2), 147–158.

    Article  Google Scholar 

  • Kuronen, M. 2014. Hydrotreated vegetable oil(HVO)–premium renewable biofuel for diesel engines. Neste Oil Proprietary Publication.

    Google Scholar 

  • Kuronen, M. 2013. Introduction to HVO, a premium bio-based diesel. Res. Technol. Neste Oil.

    Google Scholar 

  • Labeckas, G., and Slavinskas, S. 2013. Performance and emission characteristics of a direct injection diesel engine operating on KDV synthetic diesel fuel. Energy Convers. Manag. 66, 173–188.

    Article  Google Scholar 

  • Labeckas, G., Slavinskas, S., and Kanapliene, I. 2017a. The individual effects of cetane number, oxygen content or fuel properties on the ignition delay, combustion characteristics, and cyclic variation of a turbocharged CRDI diesel engine – Part 1. Energy Convers. Manag. 148, 1003–1027.

    Article  Google Scholar 

  • Labeckas, G., Slavinskas, S., and Kanapkiene, I. 2017b. The individual effects of cetane number, oxygen content or fuel properties on performance efficiency, exhaust smoke and emissions of a turbocharged CRDI diesel engine – Part 2. Energy Convers. Manag. 149, 442–466.

    Article  Google Scholar 

  • Lapuerta, M., Rodriguez-Fernandez, J., Sanchez-Valdepenas, J., and Salgado, M.S. 2016. Multi-technique analysis of soot reactivity from conventional and paraffinic diesel fuels. Flow Turbul. Combust. 96(2), 327–341.

    Article  Google Scholar 

  • Laurikko, J.K., Nylund, N.-O., Aakko-Saksa, P., Mannonen, S., Vauhkonen, V., and Roslund, P. 2014. Crude tall oil-based renewable diesel in passenger car field test. SAE technical paper 2014–01-2774.

    Google Scholar 

  • Legg, J.M., Narvaez, A.A., and McDonell, V.G. 2012. Performance of algae-derived renewable diesel in a twin-fluid airblast atomizer. In: ICLASS 2012, 12th Trennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany.

    Google Scholar 

  • Liu, D., Xu, H., Tian, J., Tan, C., and Li, Y. 2013a. Cold and warm start characteristics using HVO and RME blends in a V6 diesel engine. SAE technical paper 2013-01-1306.

    Google Scholar 

  • Liu, Y.C., Savas, A.J., and Avedisian, C.T. 2013b. The spherically symmetric droplet burning characteristics of Jet-A and biofuels derived from camelina and tallow. Fuel 108, 824–832.

    Article  Google Scholar 

  • Luning Prak, D.J., Kones, M.H., Trulove, P., McDaniel, A.M., Dickerson, T., and Cowart, J.S. 2015. Physical and chemical analysis of alcohol-to jet (ATJ) fuel and development of surrogate fuel mixtures. Energy Fuels 29, 3760–3769.

    Article  Google Scholar 

  • Mangus, M., Mattson, J., and Depcik, C. 2015. Performance and emissions characteristics of hydroprocessed renewable jet fuel blends in a single-cylinder compression ignition engine with electronically controlled fuel injection. Combust. Sci. Technol. 187, 857–73.

    Article  Google Scholar 

  • Mattson, J.M.S., and Depcik, C. 2016. First and second law heat release analysis in a single cylinder engine. SAE technical paper 2016-01-0559.

    Google Scholar 

  • McDaniel, A., Dickerson, T., Luning-Prak, D., Hamilton, L., and Cowart, J. 2016. A technical evaluation of new renewable jet and diesel fuels operated in neat form in multiple diesel engines. SAE technical paper 2016-01-0829.

    Google Scholar 

  • Miers, S.A., Ng, H., Ciatti, S.A., and Stork, K. 2005. Emissions, performance, and in-cylinder combustion analysis in a light-duty diesel engine operating on a Fischer–Tropsch biomass-to-liquid fuel. SAE technical paper 2005-01-3670.

    Google Scholar 

  • Miller, P., and Kumar, A. 2013. Development of emission parameters and net energy ratio for renewable diesel from Canola and Camelina. Energy 58, 426–437.

    Article  Google Scholar 

  • Millo, F., Bensaid, S., Fino, D., Marcano, S.J.C., Vlachos, T., and Debnath, B.K. 2014. Influence on the performance and emissions of an automotive Euro 5 diesel engine fueled with F30 from Farnesane. Fuel 138, 134–142.

    Article  Google Scholar 

  • Millo, F., Debnath, B.K., Vlachos, T., Ciaravino, C., Postrioti, L., and Buitoni, G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel 159, 614–627.

    Article  Google Scholar 

  • Millo, F., Mallamo, F., Vlachos, T., Ciaravino, C., Postrioti, L., and Biutoni, G. 2013. Experimental investigation on the effects on performance and emissions of an automotive Euro 5 diesel engine fueled with B30 from RME and HVO. SAE technical paper 2013-01-1679.

    Google Scholar 

  • Mizushima, N., Kawano, D., Ishiii, H., Tanaka, Y., and Sato, S. 2014. Evaluation of real-world emissions from heavy-duty diesel vehicle fueled with FAME, HVO and BTL using PEMS. SAE technical paper 2014-01-2823.

    Google Scholar 

  • Mizushima, N., Sato, S., Kawano, D., and Saito, A. 2012. A study on NOx emission characteristics when using biomass-derived diesel alternative fuels. SAE technical paper 2012-01-1316.

    Google Scholar 

  • Moeltner, L., Konstantinoff, L., and Schallhart, V. 2017. Hydrotreated vegetable oils, biomass to liquid and fatty acid methyl ester as biogen admixtures for diesel engines in passenger cars. SAE technical paper 2017-01-9375.

    Google Scholar 

  • Na, K., Biswas, S., Robertson, W., Sahay, K., Okamoto, R., and Mitchell, A. et al. 2015. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck. Atmos. Environ. 107, 307–314.

    Article  Google Scholar 

  • Napolitano, P., Beatrice, C., Guido, C., Giacomo, N.D., Pellegrini, L., and Scorletti, P. 2015. Hydrocracked fossil oil and hydrotreated vegetable oil (HVO) effects on combustion and emissions performance of “torque-controlled” diesel engines. SAE technical paper 2015-24-2497.

    Google Scholar 

  • Napolitano, P., Guido, C., Beatrice, C., and Pellegrini, L. 2018. Impact of hydrocracked diesel fuel and hydrotreated vegetable oils blends on the fuel consumption of automotive diesel engines. Fuel 222, 718–732.

    Article  Google Scholar 

  • Ng, H., Biruduganti, M., and Stork, K. 2005. Comparing the performance of sundiesel and conventional diesel in a light-duty vehicle and heavy-duty engine. SAE technical paper 2005-01-3776.

    Google Scholar 

  • Niemi, S., Vauhkonen, V., Mannonen, S., Ovaska, T., Nilsson, O., and Sirbio, K. et al. 2016. Effect of wood-based renewable diesel fuel blends on the performance and emissions of a non-road diesel engine. Fuel 186, 1–10.

    Article  Google Scholar 

  • No, S.-Y. 2007. Correlations for prediction of non-evaporating diesel spray penetration. J. ILSS Korea 12(3), 146–153.

    Google Scholar 

  • No, S.-Y. 2008. Prediction of maximum liquid-phase penetration in diesel spray: a review. J. ILASS Korea 13(3), 117–125.

    Google Scholar 

  • No, S.-Y. 2014. Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – a review. Fuel 115, 88–96.

    Article  Google Scholar 

  • Novak, P. 2015. Sustainable energy system with zero emissions of GHG for cities and countries. Energ Buildings 98, 27–33.

    Article  Google Scholar 

  • Nylund, N.-O., Erkkila, K., Ahtianen, M., Murtonene, T., Saikkonen, P., and Amberla, A. et al. 2011. Optimized usage of NExBTL renewable diesel fuel-OPTIBIO. VTT Technical Research Centre. VTT Research Note 2604.

    Google Scholar 

  • Ogunkoya, D., and Fang, T. 2015. Engine performance, combustion and emissions study of biomass to liquid fuel in a compression-ignition engine. Energy Convers. Manag. 95, 342–351.

    Article  Google Scholar 

  • Ogunkoya, D., Roberts, W.L., Fang, T., and Thapaliya, N. 2015. Investigation of the effects of renewable diesel fuels on engine performance, combustion, and emissions. Fuel 140, 541–554.

    Article  Google Scholar 

  • Omari, A., Pischinger, S., Bhardwaj, O.P., Holderbaum, B., Nuottimaki, J., and Honkanen, M. 2017. Improving engine efficiency and emission reduction potential of HVO by fuel-specific engine calibration in modern passenger car diesel applications. SAE technical paper 2017-01-2295.

    Google Scholar 

  • Oβwald, P., Whitside, R., Schaffer, J., and Kohler, M. 2017. An experimental flow reactor study of the combustion kinetics of terpenoid jet fuel compounds: farnesane, p-menthane and p-cymene. Fuel 187, 43–50.

    Article  Google Scholar 

  • Pellegrini, L., Beatrice, C., and Di Blasio, G. 2015. Investigation of the effect of compression ratio on the combustion behavior and emission performance of HVO blended diesel fuels in a single-cylinder light-duty diesel engine. SAE technical paper 2015-01-0898.

    Google Scholar 

  • Petersen, N., Seivwright, D., Caton, P., and Millsaps, K. 2014. Combustion characterization and ignition delay modeling of low and high-cetane alternative diesel fuels in a marine diesel engine. Energy Fuels 28, 5463–5471.

    Article  Google Scholar 

  • Piekarczyk, W., Czarnowska, L., Ptasinski, K., and Stanek, W. 2013. Thermodynamic evaluation of biomass-to-biofuels production systems. Energy 62, 95–104.

    Article  Google Scholar 

  • Price, D., Chen, C.-L., Lamjiri, M.A., Betha, R., Sanchez, K., and Liu, J. et al. 2017. More unsaturated, cooking-type hydrocarbon-like organic aerosol particle emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol. Sci. Technol. 51(2), 135–146.

    Article  Google Scholar 

  • Rauch, R., Kiennemann, A., and Sauciuc, A. 2013. Fischer–Tropsch synthesis to biofuels (BtL Process), Chap. 12. In the role of catalysis for the sustainable production of bio-fuels and bio-chemicals. In: K.S. Triantafyllidis, A.A. Lappas, M. Stocker (eds.) (Elsevier, Amsterdam), pp. 397–443.

    Google Scholar 

  • Richter, S., Kathrotia, T., Naumann, C., Kick, T., Slavinskaya, N., and Braun-Unkhoff, M. et al. 2018. Experimental and modeling study of farnesane. Fuel 215, 22–29.

    Article  Google Scholar 

  • Ridjan, I., Mathiesen, B.V., and Connolly, D. 2016. Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: a review. J. Clean. Prod. 112, 3709–3720.

    Article  Google Scholar 

  • Rimkus, A., Zaglinskis, J., Rapalisc, P., and Skackauskas, P. 2015. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression ignition engine. Energy Convers. Manag. 106, 1109–1117.

    Article  Google Scholar 

  • Rodriguez-Fernandez, J., Hernandez, J., and Sanchez-Valdeperias, J. 2016. Effect of oxygenated and paraffinic alternative diesel fuels on soot reactivity and implications on DPF regeneration. Fuel 185, 460–467.

    Article  Google Scholar 

  • Rodriguez-Fernandez, J., Lapuerta, M., and Sanchez-Valdepenas, J. 2017. Reneneration of diesel particulate filters: effect of renewable fuels. Renew. Energy 104, 30–39.

    Article  Google Scholar 

  • Rojo, C., Vancassel, X., Mirabel, P., Garnier, F., and Ponche, J.-L. 2015. Impact of alternative jet fuels on aircraft-induced aerosols. Fuel 144, 335–341.

    Article  Google Scholar 

  • Rothamer, D.A., and Murphy, L. 2013. Systematic study of ignition delay for jet fuels and diesel fuels in a heavy-duty diesel engine. Proc. Combust. Inst. 34, 3021–3029.

    Article  Google Scholar 

  • Sagnes, C., and Chabretie, M.-F. 2015. Second generation biofuels: a new milestone reached. Panorama 2015. IFP Energies nouvelles.

    Google Scholar 

  • Sajjad, H., Masjuki, H.H., Varman, M., Kalam, M.A., Arbab, M.I., and Imtenan, S. et al. 2014. Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and biodiesel. Renew. Sustain. Energy Rev. 30, 961–986.

    Article  Google Scholar 

  • Samavati, M., Martin, A., Nemanova, V., and Santarelli, M. 2018. Integration of solid oxide electrolyser, entrained gasification, and Fischer-Tropsch process for synthetic diesel production: thermodynamic analysis. Int. J. Hydrogen Energy 43, 4785–4803.

    Article  Google Scholar 

  • Seiler, J.M., Hohwiller, C., Imbach, J., and Luciani, J.F. 2010. Technical and economical evaluation of enhanced biomass to liquid fuel processes. Energy 35, 3587–3592.

    Article  Google Scholar 

  • Selvatico, D., Lanzini, A., and Santarelli, M. 2016. Low temperature Fischer–Tropsh fuels from syngas: kinetic modeling and process simulation of different plant configurations. Fuel 186, 544–560.

    Article  Google Scholar 

  • Simacek, P., Kubicaka, D., Sebor, G., and Pospisil, M. 2009. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel 88, 456–460.

    Article  Google Scholar 

  • Simio, L.D., Gambino, M., and Iannaccone, S. 2013. Possible transport energy sources for the future. Transp. Policy 27, 1–10.

    Article  Google Scholar 

  • Singer, A., Schroder, O., Pabst, C., Munack, A., Bunger, J., and Ruck, W. et al. 2015. Aging studies of biodiesel and HVO and their testing as neat fuel and blends for exhaust emissions in heavy-duty engines and passenger cars. Fuel 153, 595–603.

    Article  Google Scholar 

  • Singh, D., Subramanian, K.A., and Garg, M.O. 2018. Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel. Renew. Sustain. Energy Rev. 81, 2947–2954.

    Article  Google Scholar 

  • Singh, D., Subramanian, K.A., and Singal, S.K. 2015. Emissions and fuel consumption characteristics of a heavy duty diesel engine fueled with hydroprocessed renewable diesel and biodiesel. Appl. Energy 155, 440–446.

    Article  Google Scholar 

  • Smagala, T.G., Christensen, E., Christisone, K.M., Mohler, R.E., Gjersing, E., and McCormick, R.L. 2013. Hydrocarbon renewable and synthetic diesel fuel blendstocks: composition and properties. Energy Fuels 27, 237–246.

    Article  Google Scholar 

  • Snehesh, A.S., Mukunda, H.S., Mahapatra, S., and Dasappa, S. 2017. Fischer–Tropsch route for the conversion of biomass to liquid fuels-Technical and economic analysis. Energy 130, 182–191.

    Article  Google Scholar 

  • Sugiyama, K., Goto, I., Kitano, K., Mogi, K., and Honkanen, M. 2011. Effects of hydrotreated vegetable oil (HVO) as renewable diesel fuel on combustion and exhaust emissions in diesel engine. SAE technical paper 2011-01-1954.

    Google Scholar 

  • Sunde, K., Brekke, A., and Solberg, B. 2011. Environmental impacts and costs of hydrotreated vegetable oils, transesterified lipids and woody BTL – a review. Energies 4(6), 845–877.

    Article  Google Scholar 

  • Swain, P.K., Das, L.M., and Naik, S.N. 2011. Biomass to liquid: a prospective challenge to research and development in 21st century. Renew. Sustain. Energy Rev. 15, 4917–4933.

    Article  Google Scholar 

  • Tan, C., Xu, H., Shuai, S.-J., Ghafourian, A., Liu, D., and Tian, J. 2013. Investigation on transient emissions of a turbocharged diesel engine fueled by HVO blends. SAE technical paper 2013-01-1307.

    Google Scholar 

  • Uustalo, V., Vaisanen, S., Havukainen, J., Havukainen, M., and Luoranen, M. 2014. Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil. Renew. Energy 69, 103–113.

    Google Scholar 

  • Valco, D., Gentz, G., Allen, C., Colket, M., Edwards, T., and Gowdagiri, S. et al. 2015. Autoignition behavior of syntheric alternative jet fuels: an examination of chemical composition effects on ignition delays at low to intermediate temperatures. Proc. Combust. Inst. 35, 2983–2991.

    Article  Google Scholar 

  • Valco, D.J., Min, K., Oldani, A., Edwards, T., and Lee, T. 2017. Low temperature autoignition of conventional jet fuels and surrogate jet fuels with targeted properties in a rapid compression machine. Proc. Combust. Inst. 36, 3687–3694.

    Article  Google Scholar 

  • van Vliet, O.P.R., Faaij, A.P.C., and Turkenburg, W.C. 2009. Fischer-Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Convers Manag. 50, 855–876.

    Google Scholar 

  • Velasco, J. 2014. Growing the future bioeconomy. AMYRIS, presented at Biomass 2014. US Dept. of Energy, https//www.energy.gov/sites/prod/files, downloaded at 17 Dec. 2018.

  • Vojtisek-Lom, M., Beranek, V., Mikuska, P., Krumal, K., Coufalik, P., and Sikorova, J. et al. 2017. Blends of butanol and hydrotreated vegetable oils as drop-in replacement for diesel engines: effects on combustion and emissions. Fuel 197, 407–421.

    Article  Google Scholar 

  • Walendziewski, J., Stolarski, M., Luzny, R., and Klimek, B. 2009. Hydroprocessing of light gas oil-rape oil mixtures. Fuel Process. Technol. 90(5), 689–691.

    Article  Google Scholar 

  • Wang, C., Tian, Z., Wang, L., Xu, R., Liu, Q., and Qu, W. et al. 2012. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes. Chemsus Chem. 5(10), 1974–1983.

    Article  Google Scholar 

  • Westphal, G.A., Krahl, J., Munack, A., Rosenkranz, N., Schroder, O., Schaak, J., Pabst, C., Bruning, T., and Bunger, J. 2013. Combustion of hydrotreated vegetable oil and jatropha methyl ester in a heavy duty engine: emissions and bacterial mutagenicity. Environ. Sci. Technol. 47, 6038–6046.

    Article  Google Scholar 

  • Won, S.H., Dooley, S., Veloo, P.S., Wang, H., Oehlschlaeger, M.A., and Dryer, F.L. et al. 2013. Quantification of molecule structure impact on combustion properties for synthetic diesel fuel 2,6,10-trimethyldodecane. Joint Meeting–US Sections of the Combustion Institute 8(2), 1579–1587.

    Google Scholar 

  • Won, S.H., Veloo, P.S., Dooley, S., Santner, J., Haas, F.M., and Ju, Y. et al. 2016. Predicting the global combustion behaviors of petroleum-derived and alternative jet fuels by simple fuel property measurements. Fuel 168, 34–46.

    Article  Google Scholar 

  • Wu, Y., Ferns, J., Li, H., and Andrews, G. 2017. Investigation of combustion and emission peformance of hydrogenated vegetable oil (HVO) diesel. SAE technical paper 2017-01-2400.

    Google Scholar 

  • Xu, Y., Keresztes, I., Condo, A.M., Phillips, D., Pepiot, P., and Avedisian, C.T. 2016. Droplet combustion characteristics of algae-derived renewable diesel, conventional #2 diesel, and their mixtures. Fuel 167, 295–305.

    Article  Google Scholar 

  • Xue, X., Hui, X., Singh, P., and Sung, C.-J. 2017. Soot formation in non-premixed counterflow flames of conventional and alternative jet fuels. Fuel 210, 343–351.

    Article  Google Scholar 

  • Yamane, K., Kawasaki, K., Murat, M., Minami, W., and Phillips, D. 2015. Combustion and emission characteristics of diesel fuel derived from micro-algal oil on DI diesel engines with common-rail type injection system. SAE technical paper 2015-01-1924.

    Google Scholar 

  • Zaimes, G.G., and Khanna, V. 2013. Environmental sustainability of emerging algal biofuels: a comparative life cycle evaluation of algal biodiesel and renewable diesel. Environ. Prog. Sustain. Energy 32(4), 926–936.

    Article  Google Scholar 

  • Zhang, W. 2010. Automotive fuels from biomass via gasification. Fuel Process. Technol. 91, 866–876.

    Article  Google Scholar 

  • Zhang, C., Hui, X., Lin, Y., and Sung, C.-J. 2016. Recent development in studies of alternative jet fuel combustion: progress, challenges, and opportunities. Renew. Sustain. Energy Rev. 54, 120–138.

    Article  Google Scholar 

  • Zhao, J., Zhao, B., Wang, X., and Yang, X. 2017. Atomization performance and TGH analysis of Fischer-Tropsch fuel compared with RP-3 aviation fuel. Int. J. Hydrogen Energy 42, 18626–18632.

    Article  Google Scholar 

  • Zubel, M., Bhardwaj, O.P., Heuser, B., Holderbaum, B., Doerr, S., and Nuottimäki, J. 2016. Advanced fuel formulation approach using blends of paraffinic and oxygenated biofuels: analysis of emission reduction potential in a high efficiency diesel combustion system. SAE technical paper 2016-01-2179.

    Google Scholar 

  • Zwart, R., and van Ree, R. 2009. Bio-based Fischer–Tropsch diesel production technologies, Chap. 6. In: W. Soetaert, E.J. Vandamme (eds.) Biofuels (Wiley), pp. 95–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Young No .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

No, SY. (2019). Parffinic Biofuels: HVO, BTL Diesel, and Farnesane. In: Application of Liquid Biofuels to Internal Combustion Engines. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6737-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6737-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6736-6

  • Online ISBN: 978-981-13-6737-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics