Skip to main content

Abstract

Barley (Hordeum vulgare L.) is the fourth most valuable cereal crop in the world exceeded only by rice, wheat, and corn [1]. Specifically, barley is the most widely adapted cereal grain species with production in a variety of extreme eco-agricultural areas, including regions with high latitudes, dry temperature, or severe temperature fluctuations such as Himalayan nations, Ethiopia, Tibet, and Morocco [2]. Yet 98% of barley crops is primarily used as animal feed and malting, while only 2% is used for direct food consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shewry PR, Ullrich SE, Shewry PR, Ullrich SE (2014) Barley: chemistry and technology

    Google Scholar 

  2. Newman CW, Newman RK (2006) A brief history of barley foods. Cereal Foods World 51:4–7

    Google Scholar 

  3. Food Drug Administration (2008) H. Food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. Interim final rule. Fed Regist 73:9938–9947

    Google Scholar 

  4. Idehen E, Tang Y, Sang S (2017) Bioactive phytochemicals in barley. J Food Drug Anal 25:148–161

    CAS  PubMed  Google Scholar 

  5. Sato R (2013) Relationship between starch pasting properties, free fatty acids and amylose content in barley. Food Res Int 51:444–449

    Google Scholar 

  6. Cho SS, Dreher ML, Cho SS, Dreher ML (2001) Handbook of dietary fiber. M. Dekker, New York

    Google Scholar 

  7. Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products–a review. Food Res Int 41:850–868

    CAS  Google Scholar 

  8. Henry RJ (1987) Pentosan and (1 → 3),(1 → 4)-β-glucan concentrations in endosperm and wholegrain of wheat, barley, oats and rye. J Cereal Sci 6:253–258

    CAS  Google Scholar 

  9. Nyström L, Lampi AM, Andersson AAM, Kamaleldin A, Gebruers K, Courtin CM et al (2008) Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9767

    PubMed  Google Scholar 

  10. Holtekjølen AK, Kinitz C, Knutsen SH (2006) Flavanol and bound phenolic acid contents in different barley varieties. J Agric Food Chem 54:2253

    PubMed  Google Scholar 

  11. Abdel-Al EAM, Choo TI, Dhillon S, Rabalski I (2012) Free and bound phenolic acids and total phenolics in black, blue, and yellow barley and their contribution to free radical scavenging capacity. Cereal Chem 89:198–204

    Google Scholar 

  12. Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG et al (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem 55:4802–4809

    CAS  PubMed  Google Scholar 

  13. Temelli F, Stobbe K, Rezaei K, Vasanthan T (2013) Tocol composition and supercritical carbon dioxide extraction of lipids from barley pearling flour. J Food Sci 78:1643–1650

    Google Scholar 

  14. Andersson A, Andersson R, Autio K, Aman P (1999) Chemical composition and microstructure of two naked waxy barleys. J Cereal Sci 30:183–191

    CAS  Google Scholar 

  15. Liu Z, Liu Y, Pu Z, Wang J, Zheng Y, Li Y et al (2013) Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett 35:1765–1780

    CAS  PubMed  Google Scholar 

  16. Tan B, Watson R, Preedy V (2012) Tocotrienols: vitamin E beyond tocopherols, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  17. Lampi A, Moreau R, Piironen V (2004) Kb. Pearling barley and rye to produce phytosterol-rich fractions. Lipids 39:783–787

    CAS  PubMed  Google Scholar 

  18. Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T et al (2007) Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55:1337–1346

    CAS  PubMed  Google Scholar 

  19. Zieliński H, Kozłowska H (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48:2008

    PubMed  Google Scholar 

  20. Shen Y, Zhang H, Cheng L, Wang L, Qian H, Qi X (2016) In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem 194:1003–1012

    CAS  PubMed  Google Scholar 

  21. Ramakrishna R, Sarkar D, Schwarz P, Shetty K (2017) Phenolic linked anti-hyperglycemic bioactives of barley (Hordeum vulgare L.) cultivars as nutraceuticals targeting type 2 diabetes. Ind Crops Prod 107:509–517

    CAS  Google Scholar 

  22. Qian JY, Bai YY, Tang J, Chen W (2015) Antioxidation and α-glucosidase inhibitory activities of barley polysaccharides modified with sulfation. LWT Food Sci Technol 64:104–111

    CAS  Google Scholar 

  23. Xia X, Li G, Xing Y, Ding Y, Ren T, Kan J (2017) Antioxidant activity of whole grain highland hull-less barley and its effect on liver protein expression profiles in rats fed with high-fat diets. Eur J Nutr 57:1–8

    Google Scholar 

  24. Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7

    CAS  Google Scholar 

  25. Lee JH, Lee SY, Kim B, Seo WD, Jia Y, Wu C et al (2015) Barley sprout extract containing policosanols and polyphenols regulate AMPK, SREBP2 and ACAT2 activity and cholesterol and glucose metabolism in vitro and in vivo. Food Res Int 72:174–183

    CAS  Google Scholar 

  26. Kim YJ, Hwang SH, Jia Y, Seo WD, Lee SJ (2017) Barley sprout extracts reduce hepatic lipid accumulation in ethanol-fed mice by activating hepatic AMP-activated protein kinase. Food Res Int 101:209–217

    CAS  PubMed  Google Scholar 

  27. Ghaffarzadegan T, Zhong Y, Fåk FH, Nyman M (2018) Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem 53C:104–110

    Google Scholar 

  28. Schroeder N, Gallaher DD, Arndt EA, Marquart L (2009) Influence of whole grain barley, whole grain wheat, and refined rice-based foods on short-term satiety and energy intake. Appetite 53:363–369

    PubMed  Google Scholar 

  29. Burton-Freeman B (2000) Dietary fiber and energy regulation. J Nutr 130:272S

    CAS  PubMed  Google Scholar 

  30. El KD, Cuda C, Luhovyy BL, Anderson GH (2012) Beta glucan: health benefits in obesity and metabolic syndrome. J Nutr Metab 2012:851362

    Google Scholar 

  31. Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P et al (2001) Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol Gastrointest Liver Physiol 280:G1227

    CAS  PubMed  Google Scholar 

  32. Gong L, Cao W, Chi H, Wang J, Zhang H, Liu J et al (2018) Whole cereal grains and potential health effects: involvement of the gut microbiota. Food Res Int 103:84

    CAS  PubMed  Google Scholar 

  33. Gao C, King ML, Fitzpatrick ZL, Wei W, King JF, Wang M et al (2015) Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model. J Funct Foods 18:564–574

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Seo CR, Yi BR, Oh S, Kwon SM, Kim S, Song NJ et al (2015) Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J Funct Foods 12:208–218

    CAS  Google Scholar 

  35. Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E (2016) High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol 7:129

    PubMed  PubMed Central  Google Scholar 

  36. Evdokiak M, Niki P, Katja T, Vasilis S, Adamantini K (2010) Prebiotic potential of barley derived β-glucan at low intake levels: a randomised, double-blinded, placebo-controlled clinical study. Food Res Int 43:1086–1092

    Google Scholar 

  37. Gong L, Cao W, Gao J, Wang J, Zhang H, Sun B et al (2018) Whole Tibetan Hull-Less barley exhibit stronger effect on promoting growth of genus bifidobacterium than refined barley in vitro. J Food Sci 13:e0193313

    Google Scholar 

  38. Gallegos-Infante JA, Rocha-Guzman NE, Gonzalez-Laredo RF, Pulido-Alonso J (2010) Effect of processing on the antioxidant properties of extracts from Mexican barley (Hordeum vulgare) cultivar. Food Chem 119:903–906

    CAS  Google Scholar 

  39. Omwamba M, Hu Q (2010) Antioxidant activity in barley (Hordeum Vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology. J Food Sci 75:C66

    CAS  PubMed  Google Scholar 

  40. Sharma P, Gujral HS, Singh B (2012) Antioxidant activity of barley as affected by extrusion cooking. Food Chem 131:1406–1413

    CAS  Google Scholar 

  41. Zielinski H, Kozlowska H, Lewczuk B (2001) Bioactive compounds in the cereal grains before and after hydrothermal processing. Innovative Food Sci Emerg Technol 2:159–169

    CAS  Google Scholar 

  42. Hole AS, Kjos NP, Grimmer S, Kohler A, Lea P, Rasmussen B et al (2013) Extrusion of barley and oat improves the bioaccessibility of dietary phenolic acids in growing pigs. J Agric Food Chem 61:2739–2747

    CAS  PubMed  Google Scholar 

  43. Djurle S, Andersson AAM, Andersson R (2016) Milling and extrusion of six barley varieties, effects on dietary fibre and starch content and composition. J Cereal Sci 72:146–152

    CAS  Google Scholar 

  44. Chang C, Yang C, Samanros A, Lin J (2015) Collet and cooking extrusion change the soluble and insoluble β-glucan contents of barley. J Cereal Sci 66:18–23

    CAS  Google Scholar 

  45. Gong L, Huang L, Zhang Y (2012) Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. J Agric Food Chem 60:7177–7184

    CAS  PubMed  Google Scholar 

  46. Gong LX, Zhang Y, Wang J, Sun BG (2016) Change in health ingredients of whole Tibetan hull-less barley after steam explosion and simulated digestion in vitro. J Food Process Pres 40:239–248

    Google Scholar 

  47. Hole AS, Rud I, Grimmer S, Sigl S, Narvhus J, Sahlstrã MS (2012) Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem 60:6369–6375

    CAS  PubMed  Google Scholar 

  48. Pallin A, Agback P, Jonsson H, Roos S (2016) Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri. Food Microbiol 57:159–171

    CAS  PubMed  Google Scholar 

  49. Gómez-Caravaca AM, Verardo V, Candigliota T, Marconi E, Segura-Carretero A, Fernandez-Gutierrez A et al (2015) Use of air classification technology as green process to produce functional barley flours naturally enriched of alkylresorcinols, β-glucans and phenolic compounds. Food Res Int 73:88–96

    Google Scholar 

  50. Wolever TM, Tosh SM, Gibbs AL, Brand-Miller J, Duncan AM, Hart V et al (2010) Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr 92:723–732

    CAS  PubMed  Google Scholar 

  51. Ahmad M, Gani A, Shah A, Gani A, Masoodi FA (2016) Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β-d-glucan & enhances its antioxidant potential. Carbohydr Polym 153:696–702

    CAS  PubMed  Google Scholar 

  52. Rufián-Henares JA, Delgado-Andrade C (2009) Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res Int 42:394–400

    Google Scholar 

  53. Zhou B, Wang FF, Jang HD (2013) Enhanced antioxidant and antidiabetic activities of barley and wheat after soaking with tea catechin. Food Sci Biotechnol 22:1753–1761

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxiao Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gong, L. (2019). Barley. In: Wang, J., Sun, B., Tsao, R. (eds) Bioactive Factors and Processing Technology for Cereal Foods. Springer, Singapore. https://doi.org/10.1007/978-981-13-6167-8_4

Download citation

Publish with us

Policies and ethics