Skip to main content

Harnessing the Potential of Brassinosteroids in Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Brassinosteroids: Plant Growth and Development

Abstract

Brassinosteroids (BRs) are the steroidal plant hormones that play a pivotal role in growth and development of plants. They are ubiquitous within the plant kingdom and are well known for their pleotropic effects including growth, rhizogenesis, seed germination, flowering, maturation, senescence and abscission. In the past recent years, brassinosteroids are in the limelight for their potential to confer abiotic stress tolerance in plants. They are known to modulate a plethora of stress responsive pathways that in turn promotes the vigor of the plant under unfavorable conditions. The use of different genetic, biochemical and molecular tools have provided us convincing evidence and valuable insights on the regulation of abiotic stress tolerance using BRs. However, in depth knowledge of the different mechanisms how BRs confer abiotic stress adaptation in plants is still elusive. The present chapter is focused upon understanding the current knowledge of BR mediated abiotic stress tolerance in plants and highlighting the knowledge gaps in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, F., Singh, A., & Kamal, A. (2018). Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. Journal of Applied Biology & Biotechnology, 6, 56–62.

    Google Scholar 

  • Allagulova, C. R., Maslennikova, D. R., Avalbaev, A. M., Fedorova, K. A., Yuldashev, R. A., & Shakirova, F. M. (2015). Influence of 24-epibrassinolide on growth of wheat plants and the content of dehydrins under cadmium stress. Russian Journal of Plant Physiology, 62, 465–471.

    Article  CAS  Google Scholar 

  • Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., Shivesh, S., Durgesh, K. T., Dubaey, N. K., & Devendra, K. C. (2016). Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in Environmental Science, 4, 69.

    Article  Google Scholar 

  • Azhar, N., Su, N., Shabala, L., & Shabala, S. (2017). Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K+efflux via depolarization-activated K+channels. Plant and Cell Physiology, 58, 802–810.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bakshi, M., & Oelmüller, R. (2014). WRKY transcription factors Jack of many trades in plants. Plant Signaling and Behavior, 9, e27700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2015). WRKY proteins: Signaling and regulation of expression during abiotic stress responses. The Scientific World Journal, 2015, 807560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkhadir, Y., & Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. New Phytologist, 206, 522–540.

    Article  CAS  PubMed  Google Scholar 

  • Benková, E. (2016). Plant hormones in interactions with the environment. Plant Molecular Biology, 91, 597–597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chantre Nongpiur, R., Lata Singla-Pareek, S., & Pareek, A. (2016). Genomics approaches for improving salinity stress tolerance in crop plants. Current Genomics, 17, 343–357.

    Article  CAS  Google Scholar 

  • Che, P., Bussell, J. D., Zhou, W., Estavillo, G. M., Pogson, B. J., & Smith, S. M. (2010). Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Science Signal, 3, ra69.

    Article  CAS  Google Scholar 

  • Chen, J., & Yin, Y. (2017). WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signaling and Behavior, 12, e1365212.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen, B., Feder, M. E., & Kang, L. (2018). Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Molecular Ecology, 2018, 3040–3054.

    Article  Google Scholar 

  • Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Biology, 49, 427–451.

    Article  CAS  Google Scholar 

  • Dalcorso, G., Manara, A., Piasentin, S., & Furini, A. (2014). Nutrient metal elements in plants. Metallomics, 6, 1770–1788.

    Article  CAS  PubMed  Google Scholar 

  • Daszkowska-Golec, A., & Szarejko, I. (2013). Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. Frontiers in Plant Science, 4, 1–16.

    Article  Google Scholar 

  • Derevyanchuk, M., Litvinovskaya, R., Khripach, V., & Kravets, V. (2016). Brassinosteroid-induced de novo protein synthesis in Zea mays under salinity and bioinformatic approach for identification of heat shock proteins. Plant Growth Regulation, 78, 297–305.

    Article  CAS  Google Scholar 

  • Di Rubbo, S., Irani, N. G., & Russinova, E. (2011). PP2A phosphatases: The “on-off” regulatory switches of brassinosteroid signaling. Science Signaling, 4, pe25.

    Article  PubMed  CAS  Google Scholar 

  • Didi, V., Jackson, P., & Hejatko, J. (2015). Hormonal regulation of secondary cell wall formation. Journal of Experimental Botany, 66, 5015–5027.

    Article  CAS  PubMed  Google Scholar 

  • Ding, H. D., Zhu, X. H., Zhu, Z. W., Yang, S. J., Zha, D. S., & Wu, X. X. (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Platarum, 56, 767–770.

    Article  CAS  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2016). Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnology Journal, 14, 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Dröge-Laser, W., Snoek, B. L., Snel, B., & Weiste, C. (2018). The Arabidopsis bZIP transcription factor family—an update. Current Opinion in Plant Biology, 45, 36–49.

    Article  PubMed  CAS  Google Scholar 

  • Duan, J., & Cai, W. (2012). OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One, 7, e45117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erpen, L., Devi, H. S., Grosser, J. W., & Dutt, M. (2017). Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue and Organ Culture (PCTOC), 2017, 1–25.

    Google Scholar 

  • Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., & Xiong, L. (2015). A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 66, 6803–6817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 130, 1319–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Jr., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C., Jr. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281, 216.

    Article  CAS  Google Scholar 

  • Gudesblat, G. E., Schneider-Pizoñ, J., Betti, C., Mayerhofer, J., Vanhoutte, I., Van Dongen, W., Boeren, S., Zhiponova, M., de Vries, S., Jonak, C., & Russinova, E. (2012). Speechless integrates brassinosteroid and stomata signalling pathways. Nature Cell Biology, 14, 548–554.

    Article  CAS  PubMed  Google Scholar 

  • Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress induced photoinhibition. Molecular Plant, 8, 1304–1320.

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck, M., & Vierling, E. (2015). A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology, 427, 1537–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haworth, M., Elliott-Kingston, C., & McElwain, J. C. (2011). Stomatal control as a driver of plant evolution. Journal of Experimental Botany, 62, 2419–2423.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Alyemeni, M. N., & Hasan, S. A. (2012). Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi Journal of Biological Sciences, 19, 325–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, H. L. (2015). Functional roles of plant protein kinases in signal transduction pathways during abiotic and biotic stress. Journal of Biodiversity, Bioprospecting and Development, 2, 147.

    Google Scholar 

  • Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy, 6, 54.

    Article  CAS  Google Scholar 

  • Hou, J., Zhang, Q., Zhou, Y., Ahammed, G. J., Zhou, Y., Yu, J., Fang, H., & Xia, X. (2018). Glutaredoxin GRXS16 mediates brassinosteroid-induced apoplastic H2O2 production to promote pesticide metabolism in tomato. Environmental Pollution, 240, 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Houston, K., Tucker, M. R., Chowdhury, J., Shirley, N., & Little, A. (2016). The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions. Frontiers in Plant Science, 7, 984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakubowska, D., & Janicka, M. (2017). The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress. Plant Science, 264, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Jia, D., Gong, X., Li, M., Li, C., Sun, T., & Ma, F. (2018). Overexpression of a novel apple NAC transcription factor gene, MdNAC1, confers the dwarf phenotype in transgenic apple (Malus domestica). Genes, 9, 5.

    Article  CAS  Google Scholar 

  • Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, N., & Pati, P. K. (2017). Integrating classical with emerging concepts for better understanding of salinity stress tolerance mechanisms in rice. Frontiers in Environmental Science, 5, 42.

    Article  Google Scholar 

  • Kaur, N., Dhawan, M., Sharma, I., & Pati, P. K. (2016a). Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biology, 16, 131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur, N., Kirat, K., Saini, S., Sharma, I., Gantet, P., & Pati, P. K. (2016b). Reactive oxygen species generating system and brassinosteroids are linked to salt stress adaptation mechanisms in rice. Plant Signaling & Behavior, 11, e1247136.

    Article  CAS  Google Scholar 

  • Kim, T., Michnlewicz, M., Begmann, D., & Wang, Z. Y. (2012). Brassinosteroid regulates stomatal development by GSK3- mediated inhibition of a MAPK pathway. Nature, 482, 419–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová, K., Vítámvás, P., & Prášil, I. T. (2014). Wheat and barley dehydrins under cold, drought, and salinity–what can LEA-II proteins tell us about plant stress response? Frontiers in Plant Science, 5, 343.

    PubMed  PubMed Central  Google Scholar 

  • Kosová, K., Vítámvás, P., Urban, M. O., Prášil, I. T., & Renaut, J. (2018). Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Frontiers in Plant Science, 9, 122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishna, P., Bishun, D. P., & Tawhidur, R. (2017). Brassinosteroid action in plant abiotic stresstolerance. In Brassinosteroids (pp. 193–202). New York: Humana Press.

    Chapter  Google Scholar 

  • Kundu, P., Gill, R., Ahlawat, S., Anjum, N. A., Sharma, K. K., Ansari, A. A., Hasanuzzaman, M., Ramakrishna, A., Chauhan, N., Tuteja, N., & Gill, S. S. (2018). Targeting the redox regulatory mechanisms for abiotic stress tolerance in crops. In Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants (pp. 151–220). London: Academic.

    Chapter  Google Scholar 

  • Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Hurry, V., & Hüner, N. P. (2017). Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abioticstress. In Photosynthesis: Structures, mechanisms, and applications (pp. 185–202). Cham: Springer.

    Chapter  Google Scholar 

  • Lata, C., & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 62, 4731–4748.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Omranian, N., Neumetzler, L., Wang, T., Herter, T., Usadel, B., Demura, T., Giavalisco, P., Nikoloski, Z., & Persson, S. (2016). A transcriptional and metabolic framework for secondary wall formation in Arabidopsis. Plant Physiology, 172, 1334–1351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, F., Qu, Y., & Zhang, Q. (2014). Phospholipids: Molecules regulating cytoskeletal organization in plant abiotic stress tolerance. Plant Signaling & Behavior, 9, e28337.

    Article  CAS  Google Scholar 

  • Liu, J., Gao, H., Wang, X., Zheng, Q., Wang, C., Wang, X., & Wang, Q. (2014). Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Plant Biology, 16, 440–450.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Yang, Q., Wang, Y., Wang, L., Fu, Y., & Wang, X. (2018). Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization. Journal of Experimental Botany, 69, 1037–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., Rubio, F., Nortes, P. A., Mittler, R., & Rivero, R. M. (2018). Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules, 23, 1–20.

    Article  CAS  Google Scholar 

  • Mertens, J., Aliyu, H., & Cowan, D. A. (2018). LEA proteins and the evolution of the WHy domain. Applied and Environmental Microbiology, 25, AEM-00539.

    Google Scholar 

  • Miglani, G. S. (2017). Genome editing in crop improvement: Present scenario and future prospects. Journal of Crop Improvement, 31, 453–559.

    Article  CAS  Google Scholar 

  • Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins—a new family of plant hormones from rape pollen. Nature, 225, 1065.

    Article  CAS  PubMed  Google Scholar 

  • Moura, J. C., Bonine, C. A., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52, 360–376.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, A., Tochio, N., Fujioka, S., Ito, S., Kigawa, T., Shimada, Y., Makoto, M., Shigeo, Y., Toshinori, K., Tadao, A., Hideharu, S., & Takeshi, N. (2017). Molecular actions of two synthetic brassinosteroids, iso-carbaBL and 6-deoxoBL, which cause altered physiological activities between Arabidopsis and rice. PLoS One, 12, 0174015.

    Google Scholar 

  • Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E., & Galmés, J. (2017). Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science, 8, 1–15.

    Article  Google Scholar 

  • Rademacher, W., & Jung, J. (2018). Plant growth regulating chemicals—cereal grains. In Plant growth regulating chemicals (pp. 253–271). Boca Raton: CRC Press.

    Google Scholar 

  • Raja, V., Majeed, U., Kang, H., Andrabi, K. I., & John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157.

    Article  CAS  Google Scholar 

  • Rao, X., & Dixon, R. A. (2017). Brassinosteroid mediated cell wall remodeling in grasses under abiotic stress. Frontiers in Plant Science, 8, 1–7l.

    Article  CAS  Google Scholar 

  • Rattan, A., Kapoor, N., & Bhardwaj, R. (2014). Role of brassinosteroids in osmolytes accumulation under salinity stress in Zea mays plants. International Journal of Science and Research, 3, 1822–1827.

    Google Scholar 

  • Saini, S., Kaur, N., & Pati, P. K. (2018). Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Analytical Biochemistry, 550, 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Serna, L. (2013). What causes opposing actions of brassinosteroids on stomatal development? Plant Physiology, 162, 3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112, 1209–1221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S. A., Sharma, A., Song, H., ur Rehman, S., & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147, 935–944.

    Article  CAS  PubMed  Google Scholar 

  • Shakirova, F., Allagulova, C., Maslennikova, D., Fedorova, K., Yuldashev, R., Lubyanova, A., Bezrukova, M., & Avalbaev, A. (2016). Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiology and Biochemistry, 108, 539–548.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, I. (2014). Studies on brassinosteroid mediated responses in Oryza sativa L. under pesticide and salt stress employing molecular and biochemical approaches. Doctoral Dissertation, Guru Nanak Dev University, Amritsar.

    Google Scholar 

  • Sharma, I., Bhardwaj, R., & Pati, P. K. (2013a). Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pesticide Biochemistry and Physiology, 105, 144–153.

    Article  CAS  Google Scholar 

  • Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013b). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, I., Kaur, N., Saini, S., & Pati, P. K. (2013c). Emerging dynamics of brassinosteroids research. In R. K. Salar, S. K. Gahlawat, P. Siwach, & J. S. Duhan (Eds.), Biotechnology: Prospects and applications (pp. 3–17). New Delhi: Springer.

    Chapter  Google Scholar 

  • Sharma, I., Kaur, N., & Pati, P. K. (2017). Brassinosteroids: A promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Frontiers in Plant Science, 8, 2151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shigeta, T., Zaizen, Y., Sugimoto, Y., Nakamura, Y., Matsuo, T., & Okamoto, S. (2015). Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. Journal of Plant Physiology, 178, 69–73.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40, 59.

    Article  CAS  Google Scholar 

  • Sies, H. (2018). H2O2 as a central redox signaling molecule in physiological oxidative stress. Free Radical Biology and Medicine, 120, S6.

    Article  Google Scholar 

  • Song, L. X., Xu, X. C., Wang, F. N., Wang, Y., Xia, X. J., Shi, K., Zhou, Y. H., Zhou, J., & Yu, J. Q. (2018). Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant, Cell and Environment, 41, 1113–1125.

    Article  CAS  PubMed  Google Scholar 

  • Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. The South African Journal of Botany, 105, 306–312.

    Article  CAS  Google Scholar 

  • Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science, 5, 1–9.

    Article  Google Scholar 

  • Tong, H., Jin, Y., Liu, W., Li, F., Fang, J., Yin, Y., Qian, Q., Zhu, L., & Chu, C. (2009). DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. The Plant Journal, 1, 803–816.

    Article  Google Scholar 

  • Turan, S., Cornish, K., & Kumar, S. (2012). Salinity tolerance in plants: Breeding and genetic engineering. Australian Journal of Crop Science, 6, 1337.

    Google Scholar 

  • Vardhini, B. V., & Anjum, N. A. (2015). Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Frontiers in Environmental Science, 2, 1–16.

    Article  Google Scholar 

  • Vaughan, M. M., Block, A., Christensen, S. A., Allen, L. H., & Schmelz, E. A. (2018). The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews, 17, 37–49.

    Article  CAS  Google Scholar 

  • Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 67.

    PubMed  PubMed Central  Google Scholar 

  • Xia, X. J., Gao, C. J., Song, L. X., Zhou, Y. H., Shi, K., & Yu, J. Q. (2014). Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant, Cell & Environment, 37, 2036–2050.

    Article  CAS  Google Scholar 

  • Xia, X. J., Zhou, Y. H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66, 2839–2856.

    Article  CAS  PubMed  Google Scholar 

  • Xie, L., Yang, C., & Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany, 62, 4495–4506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, M., Goue, N., Igarashi, H., Ohtani, M., Nakano, Y., Mortimer, J. C., Nishikubo, N., Kubo, M., Katayama, Y., Kakegawa, K., Dupree, P., & Demura, T. (2010). VASCULAR-RELATED NAC-DOMAIN6 and VASCULARRELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiology, 153, 906–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, M., Lamattina, L., Spoel, S. H., & Loake, G. J. (2014). Nitric oxide function in plant biology: A redox cue in deconvolution. New Phytologist, 202, 1142–1156.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, H., Tang, Q., & Hua, X. (2010). Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. Journal of Plant Growth Regulation, 29, 44–52.

    Article  CAS  Google Scholar 

  • Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant and Cell Physiology, 52, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Q., & Dixon, R. A. (2011). Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends in Plant Science, 16, 227–233.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, R. Q., Lee, C. H., Zhou, J. L., McCarthy, R. L., & Ye, Z. H. (2008). A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 20, 2763–2782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y. L., Huo, S. F., Wang, L. T., Meng, J. F., Zhang, Z. W., & Xi, Z. M. (2018). Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiology and Biochemistry, 130, 555–565.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Zuo, M., Liang, Y., Jiang, M., Zhang, J., Scheller, H. V., Tan, M., & Zhang, A. (2013). MAP 65–1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. Journal of Experimental Botany, 64, 3787–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, N., Pati, P.K. (2019). Harnessing the Potential of Brassinosteroids in Abiotic Stress Tolerance in Plants. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_15

Download citation

Publish with us

Policies and ethics