Skip to main content

Energy Characteristics of Welding Heat Sources

  • Chapter
  • First Online:
Thermal Processes in Welding

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In most cases welding is carried out with local heating of bodies up to the temperature which is determined by the type of welding and properties of the materials to be welded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaluss, K., Buerkner, G., Nguyen-Chung, T., Gehde, M., & Mennig, G. (2010). Simulation of weld pool in plasma—MIG deposition welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 93–109). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Belousov, Yu. V. (2002). Evaluation of concentration of surface heat source with normally distributed heat power. Welding Production, 8, 8–12 (in Russian).

    Google Scholar 

  • Bosworth, M. R. (1991) Effective heat input in pulsed current gas metal arc welding with solid wire electrodes. Welding Journal, 5, 111-s–117-s.

    Google Scholar 

  • Carlson, B. E., Wang, H. -P., Turichin, G. A., Valdaitseva, Y. A., Ivanov, S. Yu., & Karkhin, V. A. (2013). Mathematical model of plasma jet for plasma arc brazing. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 737–751). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Cho, W. -I., Na, S. -Y., Cho, M. -H., & Lee, J. -S. (2010). A transient investigation of laser–arc hybrid welding by numerical simulation. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 57–63). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Choo, R. T. C., Szekely, J., & Westhoff, R. C. (1990). Modelling of high-current arcs with emphasis on free surface phenomena in the weld pool. Welding Journal, 9, 346-s–361-s.

    Google Scholar 

  • Christensen, N., Davies, V. L., & Gjermundsen, K. (1965). Distribution of temperatures in arc welding. British Welding Journal, 54–75.

    Google Scholar 

  • Doan, G. E., & Lorentz, R. E. (1941). Crater formation and the force of the electric welding arc in various atmospheres. Welding Journal, 20, 103-s–108-s.

    Google Scholar 

  • Dresvin, S. V. (Ed.). (1972). Physics and techniques of low-temperature plasma (351 pp.). Moscow: Atomizdat (in Russian).

    Google Scholar 

  • DuPont, J. N., & Marder, A. R. (1995). Thermal efficiency of arc welding processes. Welding Journal, 12, 406-s–416-s.

    Google Scholar 

  • Eagar, T. W., & Tsai, N. -S. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal, 12, 346-s–355-s.

    Google Scholar 

  • Evans, D. M., Huang, D., McClure, J. C., & Nunes, A. C. (1998). Arc efficiency of plasma arc welding. Welding Journal, 2, 53-s–58-s.

    Google Scholar 

  • Farmer, A. J. D., Haddad, G. N., & Cram, L. E. (1986). Temperature determinations in a free-burning arc: III measurements with molten anodes. Journal of Physics D: Applied Physics, 19, 1723–1730.

    Google Scholar 

  • Finkelnburg, W., & Maecker, H. (1961). Electric arcs and thermal plasma (370 pp.). Moscow: Foreign Literature Publishing (in Russian).

    Google Scholar 

  • Frolov (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian).

    Google Scholar 

  • Fuerschbach, P. W. (1995). A dimensionless parameter model for arc welding processes/trends in welding research. In Proceedings of the 4th International Conference (pp. 493–497), 5–8 June 1995, Gatlinburg, Tennessee.

    Google Scholar 

  • Gage, R. M. (1959). Principles of the modern arc torch. Welding Journal, 38(10), 959–962.

    Google Scholar 

  • Galler, M., Ernst, W., Vallant, R., & Enzinger, N. (2010). Simulation based determination of the electrical contact resistance during resistance spot welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 883–900). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Gelman, A. S. (1970). Principles of resistance welding (312 pp.). Moscow: Mashinostroenie (in Russian).

    Google Scholar 

  • Gick, A. E. F., Quigley, M. B. C., & Richards, P. H. (1973). The use of electrostatic probes to measure the temperature profiles of welding arcs. Journal of Physics D: Applied Physics, 6, 1941–1949.

    Google Scholar 

  • Giedt, W. H., Tallerico, L. N., & Feurschbach, P. W. (1989). GTA welding efficiency: Calorimetric and temperature field measurements. Welding Journal, 1, 28-s–32-s.

    Google Scholar 

  • Glickstein, S. S. (1981). Basic studies of the arc welding process. In Trends in welding research in the United States. Proceedings of a Conference (pp. 3–51).

    Google Scholar 

  • Glickstein, S. S., & Friedmann, E. (1983). Temperature transients in gas tungsten arc weldments. Welding Review, 62(5), 72–73.

    Google Scholar 

  • Grigoryants, A. G. (1994). Basics of laser material processing (313 pp.). Taylor and Francis Inc.

    Google Scholar 

  • Haddad, G. N., & Farmer, A. Y. D. (1984). Temperature determinations in a free–burning arc. I: experimental techniques and results in argon. Journal of Physics D, 17, 1189–1196.

    Google Scholar 

  • Haddad, G. N., Farmer, A. Y. D., Kovitya, P., & Cram, L. E. (1985). Physical processes in gas–tungsten arcs. IIW Doc. 212-627-85.

    Google Scholar 

  • Haelsig, A., Pehle, S., Kusch, M., & Mayr, P. (2017). Reducing potential errors in the calculation of cooling rates for typical arc welding processes. Welding in the World, 61, 745–754.

    Google Scholar 

  • Hertel, M., Fuessel, U., Schnick, M., Reisgen, U., Mokrov, O., Zabirov, A., & Spille-Kohoff, A. (2013). Numerical simulation of arc and metal transfer in gas metal arc welding. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 67–81). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Hiraoka, K., Shiwaku, T., & Ohji, T. (1997). Determining temperature distributions of gas tungsten arc (TIG) plasma by spectroscopic methods. Welding International, 11(9), 688–696.

    Google Scholar 

  • Hsu, K. C., Etemadi, K., & Pfender, E. (1983). Study of the free-burning high intensity argon arc. Journal of Applied Physics, 54, 1293–1301.

    Google Scholar 

  • Ishchenko, A. Ya., Podielnikov, S. V., & Poklyatsky, A. G. (2007). Friction stir welding of aluminium alloys (Review). The Paton Welding Journal, 11, 25–30.

    Google Scholar 

  • Jackson, C. E. (1960). The science of arc welding. Welding Journal, 39, 129-s–140-s, 177-s–190-s, 225-s–230-s.

    Google Scholar 

  • Katsaounis, A. (1993). Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs. Welding Journal, 9, 447-s–454-s.

    Google Scholar 

  • Key, J. F., Chan, J. W., & McIlwain, M. E. (1983). Process parameter influence on arc temperature distribution. Welding Journal, 62, 179-s–184-s. IIW Doc. 212-549-83.

    Google Scholar 

  • Kobayashi, M., & Suga, T. (1979). A method for the spectral temperature measurement of a welding arc. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 25–37). Cambridge: The Welding Institute.

    Google Scholar 

  • Kochergin, K. A. (1987). Resistance welding (240 pp.). Leningrad: Mashinostroenie (in Russian).

    Google Scholar 

  • Kopayev, B. V., Rybachuk, A. M., & Lebedev, V. A. (2006). On selection of empirical formulae for arc pressure distribution. Welding Production, 4, 3–8 (in Russian).

    Google Scholar 

  • Kou, S., & Le, Y. (1984). Heat flow during the autogeneous GTA welding of aluminum alloy pipes. Metallurgical Transactions A, 15A(6), 1165–1171.

    Google Scholar 

  • Kovitya, P., & Lowke, J. J. (1982). Two-dimensional calculations in welding arcs in argon. IIW Doc. 212-534-82.

    Google Scholar 

  • Kovitya, P., & Lowke, J. J. (1985). Two-dimensional analysis of free-burning arcs in argon. Journal of Physics D, 18, 53–70.

    Google Scholar 

  • Kudinov, V. V., & Ivanov, V. M. (1981). Plasma refractory coating (192 pp.). Moscow: Mashinostroenie (in Russian).

    Google Scholar 

  • Lancaster, J. F. (Ed.). (1986). The physics of welding (2nd ed., 340 pp.). Oxford: Pergamon Press.

    Google Scholar 

  • Lancaster, J. F. (1987). The physics of fusion welding part 1: The electric arc in welding. In IEEE Proceedings, 134, Pt. B(5), 233–254.

    Google Scholar 

  • Lebedev, V. K., Chernenko, I. A., & Vill, V. I. (Eds.). (1987). Friction welding. Handbook (236 pp.). Leningrad: Mashinostroenie (in Russian).

    Google Scholar 

  • Lee, S.-Y., & Na, S.-J. (1996). A numerical analysis of a stationary gas tungsten welding arc considering various electrode angles. Welding Journal, 9, 269-s–279-s.

    Google Scholar 

  • Leskov, G. I. (1970). Electric welding arc (335 pp.). Moscow: Mashinostroenie (in Russian).

    Google Scholar 

  • Lindgren, L.-E. (2007). Computational welding mechanics. Thermomechanical and microstructural simulations (248 pp.). Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • Lohwasser, D., & Chen, Z. (Eds.). (2010). Friction stir welding: From basics to applications (424 pp.). Oxford: Woodhead Publishing.

    Google Scholar 

  • Lopota, V. A., Turichin, G. A., Valdaytseva, E. A., Malkin, P. E., & Gumenyuk, A. V. (2006). Computer system for modelling of electron beam and laser welding. Automatic Welding, 2, 18–21 (in Russian).

    Google Scholar 

  • Lowke, J. J., & Tanaka, M. (2006). LTE—Diffusion approximation for arc calculations. Journal of Physics D: Applied Physics, 39, 3634–3643.

    Google Scholar 

  • Lu, M., & Kou, S. (1988). Power and current distributions in gas tungsten arcs. Welding Journal, 2, 29-s–34-s.

    Google Scholar 

  • Makhnenko, V. I., & Kravtsov, T. G. (1976). Thermal processes in mechanized deposition on circular cylinder-shaped workpieces (159 pp.). Kiev: Naukova Dumka (in Russian).

    Google Scholar 

  • Martin, J. (2006, Jan/Feb). Pushing the boundaries—Friction stir goes deeper than before. TWI Connect, 1.

    Google Scholar 

  • Matsunawa, A., & Nishiguchi, M. (1979). The cathode mechanism in free burning arcs with refractory electrodes: Probe measurement in low pressure arcs and the mechanism of a cathode plasma ball. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 67–77). Cambridge: The Welding Institute.

    Google Scholar 

  • Messler, R. W. Jr. (1999). Principles of welding: Processes, physics, chemistry, and metallurgy (662 pp.). New York: Wiley.

    Google Scholar 

  • Metcalfe, J. C., & Quingley, M. B. C. (1975). Heat transfer in plasma-arc welding. Welding Journal, 54(3), 99-s–103-s.

    Google Scholar 

  • Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Reports: A Review Journal. Materials Science and Engineering R, 50, 1–78.

    Google Scholar 

  • Mishra, R. S., & Mahoney, M. W. (Eds.). (2007). Friction stir welding and processing (352 pp.). Materials Park, Ohio: ASM International.

    Google Scholar 

  • Mochizuki, M., Tanaka, M., & Okano, S. (2010). Distortion analysis by combining arc plasma process with weld mechanics. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 551–578 ). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Murphy, A. B., Tanaka, M., Yamamoto, K., Tashiro, S., Sato, T., & Lowke, J. J. (2009). Modelling of thermal plasmas for arc welding: The role of the shielding gas properties and of metal vapour. Journal of Physics D: Applied Physics, 42, 1–20.

    Google Scholar 

  • Murphy, A. B., & Thomas, D. G. (2017). Prediction of arc, weld pool and weld properties with a desktop computer model of metal-inert-gas welding. Welding in the World, 61, 623–633.

    Google Scholar 

  • Nerovny, V. M. (Ed.). (2016). Theory of welding processes (2nd ed., 702 pp.). Moscow: MVTU Publishing (in Russian).

    Google Scholar 

  • Nestor, O. H. (1962). Heat intensity and current density distributions at the anode of high-current, inert gas. Journal of Applied Physics, 33(5), 1638–1648.

    Google Scholar 

  • Niles, R. W., & Jackson, C. E. (1975). Weld thermal efficiency of the GTAW process. Welding Journal, 1, 25 s–32 s.

    Google Scholar 

  • Nomura, K., Ogino, Y., Murakami, K., & Hirata, Y. (2010). Features of magnetic controlled TIG arc plasma—Modelling and experiment. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 83–91). Graz: Technischen Universitaet Graz.

    Google Scholar 

  • Olsen, H. N. (1963). The electric arc as a light source for quantitative spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 3, 305–333.

    Google Scholar 

  • Olshansky, N. A. (Ed.). (1978). Welding in engineering industry. 1. Handbook (504 pp.). Moscow: Mashinostroenie (in Russian).

    Google Scholar 

  • Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian).

    Google Scholar 

  • Petrunichev, V. A. (1960). Thermal and mechanical effect of high-power arc on weld pool. In N. N. Rykalin (Ed.), Processes of melting of base metal during welding (pp. 117–166). Moscow: Publishing House of the Academy of Sciences of the USSR (in Russian).

    Google Scholar 

  • Prokhorov, N. N. (1976). Physical processes in metals during welding. 2 Stresses, deformations and phase transformations (600 pp.). Moscow: Metallurgiya (in Russian).

    Google Scholar 

  • Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.

    Google Scholar 

  • Rykalin, N. N. (1951). Calculation of heat flow in welding (Z. Paley & C. M. Adams, Jr. Trans.) (337 pp.). Moscow.

    Google Scholar 

  • Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German).

    Google Scholar 

  • Rykalin, N. N. (1974). Energy sources for welding. Welding in the World, 12(9/10), 227–248.

    Google Scholar 

  • Rykalin, N. N., & Kulagin, I. D. (1953). Thermal parameters of the welding arc. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 10–58). Moscow: Publication of the USSR Academy of Sciences (in Russian).

    Google Scholar 

  • Rykalin, N. N., & Shorshorov, M. H. (1953). Heating of thin metal sheets and massive workpieces with gas flame torch. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 89–111). Moscow: Publication of the USSR Academy of Sciences (in Russian).

    Google Scholar 

  • Rykalin, N., Uglov, A., & Kokora, A. (1978). Laser machining and welding (312 pp.). Moscow: Mir Publishers.

    Google Scholar 

  • Rykalin, N., Uglov, A., Zuev, I., & Kokora, A. (1988). Laser and electron beam material processing: Handbook (591 pp.). Moscow: Mir Publishers.

    Google Scholar 

  • Sandvik (1977). Welding handbook (136 pp.). Sandviken: Sandvik Publication.

    Google Scholar 

  • Schmidt, H. N. B. (2010). Modelling thermal properties in friction stir welding. In D. Lohwasser, Z. Chen (Eds.), Friction stir welding. From basics to applications (pp. 277–313). Oxford: Woodhead Publishing.

    Google Scholar 

  • Schnick, M., Fussel, U., Hertel, M., Spille-Kohoff, A., & Murphy, A. B. (2010). Effects of metal vapour on the arc behaviour in GMA welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 43–56). Graz: Verlag der Technischer Universitaet Graz.

    Google Scholar 

  • Seyffarth, P., & Krivtsun, I. (2002). Laser-arc processes and their applications in welding and material treatment (200 pp.). Boca Raton: CRC Press.

    Google Scholar 

  • Smaars, E. A., & Acinger, K. (1968). Material transport and temperature distribution in arc between melting aluminium electrodes. IIW Doc. 212-162-68.

    Google Scholar 

  • Smartt, H. B., Stewart, J. A., & Einerson, C. J. (1986). Heat transfer in gas tungsten arc welding. ASM Metals/Materials Technology Series, 8511–011. Metals Park, Ohio, 1–14.

    Google Scholar 

  • Sosnin, N. A., Yermakov, S. A., & Topolyansky, P. A. (2008). Plasma technologies (406 pp.). St. Petersburg: Polytechnic University Publishing (in Russian).

    Google Scholar 

  • Sudnik, V. A., & Ivanov, A. V. (1998). Mathematical model for heat source in gas metal arc welding. Part 1. Normal process. Welding Production, 9, 3–9 (in Russian).

    Google Scholar 

  • Sudnik, V. A., & Rybakov, A. S. (1992). Calculation and experimental models of the moving arc of a non-consumable electrode in argon. Welding International, 6(4), 301–303.

    Google Scholar 

  • Sudnik, V. A., Rybakov, A. S., & Zaytsev, O. I. (2005). Mathematical and computer software TIGSIM for analysis of arc welding with a non-consumable electrode in argon. In V. A. Sudnik (Ed.), Proceedings of International Conference on Computer Technologies in Joining of Materials (pp. 128–145). Tula: Tula State University Publishing (in Russian).

    Google Scholar 

  • Sudnik, V. A., & Yerofeyev, V. A. (1988). Computer methods for research of welding processes (94 pp.). Tula: Publishing House of the Technical University (in Russian).

    Google Scholar 

  • Szekely, J. (1989). Transport phenomena in welds with emphasis on free surface phenomena. In Proceedings of 2nd International Conference on Trends in Welding Research (pp. 3–11).

    Google Scholar 

  • Thomas, W. M., Nicholas, E. D., Needhamm, J. C., Murch, M. G., Temple-Smith, P., & Dawes, C. J. (1991). Improvements relating to friction welding. European Patent Specification 0 615 480 B1 1991.

    Google Scholar 

  • Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminum alloys. International Materials Reviews, 54(2), 49–93.

    Google Scholar 

  • Tikhodeyev, G. M. (1961). Energetic properties of electric welding arc (254 pp.). Moscow: Publishing House of the USSR Academy of Sciences (in Russian).

    Google Scholar 

  • Tsai, N. S., & Eagar, T. W. (1985). Distribution of the heat and current fluxes in gas tungsten arcs. Metallurgical Transactions B, 16B(12), 841–846.

    Google Scholar 

  • Tsarkov, A. V., & Orlik, G. V. (2001). Determination of concentration factor of welding arc in tungsten arc welding. Welding Production, 6, 3–5 (in Russian).

    Google Scholar 

  • Turichin, G., Valdaitseva, E., Pozdeeva, E., Dilthey, U., & Gumeniuk, A. (2008). Theoretical investigation of dynamic behaviour of molten pool in laser and hybrid welding with deep penetration. The Paton Welding Journal, 7, 11–15.

    Google Scholar 

  • Turichin, G. A., Valdaytseva, E. A., Karkhin, V. A., Wang, H.-P., & Carlson, B. E. (2013). Modelling of plasma jet temperature field with slope incident on the surface with plasma and hybrid processing materials. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application (pp. 18–21) September 2013. St. Petersburg, Russia. St. Petersburg: St. Petersburg State Polytechnic University Publishing (pp. 52–64).

    Google Scholar 

  • Ushio, M., & Matsuda, F. (1982). Mathematical modeling of heat transfer of welding arc (Part 1). IIW Doc. 212-528-82.

    Google Scholar 

  • Vill, V. I. (1962). Friction welding of metals (114 pp.). American Welding Society.

    Google Scholar 

  • Watkins, A. D., Smartt, H. B., & Einerson, C. Y. (1990). Heat transfer in gas metal arc welding. In Proceedings of 3rd Conference on Recent Trends in Welding Science and Technology. Metals Park (pp. 19–23). Ohio: ASM International.

    Google Scholar 

  • Wendelstorf, J., Decker, I., & Wohlfahrt, H. (1997). TIG and plasma arc modelling: A survey. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 3, pp. 848–897). London: The Institute of Materials.

    Google Scholar 

  • Yamauchi, N., & Taka, T. (1979). TIG arc welding with hollow tungsten electrodes. IIW Doc. 212-452-79.

    Google Scholar 

  • Yampolsky, V. M. (1972). Investigation of features of vacuum arc discharge with hollow cathode of welding type. Transactions of Institutes of Higher Education. Engineering, 7, 67–68 (in Russian).

    Google Scholar 

  • Yerofeyev, V. A., & Maslennikov, A. V. (2005). Physical-mathematical model for multi-pass arc welding process/transactions of Tula State University. In Computer Technologies in Joining Materials, 3 (pp. 246–255). Tula: Tula State Technical University Publishing (in Russian).

    Google Scholar 

  • Yushchenko, K. A., Chervyakov, N. O., & Kalina, P. P. (2006). Energy characteristics of low-amperage arcs. The Paton Welding Journal, 4, 17–21.

    Google Scholar 

  • Zaehr, J., Schnick, M., Fuessel, U., Lohse, M., & Sende, M. (2010). Numerical investigations of process gases and their influence on TIG—Welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 3, pp. 111–126). Graz: Technischen Universitaet Graz.

    Google Scholar 

  • Zhu, P., Lowke, J. J., Morrow, R., & Haidar, J. (1995). Prediction of anode temperatures of free burning arcs. Journal of Physics D: Applied Physics, 28, 1369–a1376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karkhin, V.A. (2019). Energy Characteristics of Welding Heat Sources. In: Thermal Processes in Welding. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-5965-1_1

Download citation

Publish with us

Policies and ethics