Skip to main content

An Electrochemical DNA Sensor Based on Conducting Polymer Electrode

  • Conference paper
  • First Online:
7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7) (BME 2018)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 69))

Abstract

In this paper, a DNA aptamer was detected by electrochemical DNA sensors. To enhance the sensitivity and selectivity, the working electrode surface of the electrochemical sensor was modified by a synthesis of poly-pyrrole nanowires. Characterization of poly-pyrrole nanowire was verified by SEM images. The evaluation of DNA sensors was implemented using EC301 Potentiostat from SRS. The sensor can detect the DNA concentration as low as 10−12 mol/l. A series of measurement were conducted, which showed the relationship between DNA concentrations and peak current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dewey, F., Pan, S., Wheeler, M., Quake, S., Ashley, E.: DNA sequencing: clinical applications of new DNA sequencing technologies. Circulation 125, 931–944 (2012)

    Article  Google Scholar 

  2. Liu, G.E.: Recent applications of DNA sequencing technologies in food, nutrition and agriculture. Recent. Pat. Food Nutr. Agric. 3, 187–195 (2011)

    Google Scholar 

  3. Weber-Lehmann, J., Schilling, E., Gradl, G., Richter, D., Wiehler, J., Rolf, B.: Finding the needle in the haystack: differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci. Int.: Genet. 9, 42–46 (2014)

    Article  Google Scholar 

  4. Maxam, A., Gilbert, W.: A new method for sequencing DNA. Proc. Natl. Acad. Sci. 74, 560–564 (1977)

    Article  Google Scholar 

  5. Reinartz, J.: Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief. Funct. Genomics Proteomics 1, 95–104 (2002)

    Article  Google Scholar 

  6. Edwards, J., Ruparel, H., Ju, J.: Mass-spectrometry DNA sequencing. Mutat. Res./Fundam. Mol. Mech. Mutagen. 573, 3–12 (2005)

    Article  Google Scholar 

  7. Zwolak, M., Di Ventra, M.: DNA sequencing via electron tunneling. In: 2012 IEEE International Symposium on Circuits and Systems (2012)

    Google Scholar 

  8. Drmanac, R., et al.: Sequencing by hybridization (SBH): advantages, achievements, and opportunities. In: Hoheisel, J., et al. (eds.) Chip Technology. Advances in Biochemical Engineering/Biotechnology, vol. 77. Springer, Berlin (2002)

    Google Scholar 

  9. Drummond, T., Hill, M., Barton, J.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003)

    Article  Google Scholar 

  10. Homs, M.: DNA sensors. Anal. Lett. 35, 1875–1894 (2002)

    Article  Google Scholar 

  11. Peng, H., Zhang, L., Soeller, C., Travas-Sejdic, J.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009)

    Article  Google Scholar 

  12. Bredas, J., Street, G.: Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985)

    Article  Google Scholar 

  13. Malhotra B, Chaubey A, Singh S.: Prospects of conducting polymers in biosensors. Anal. Chim. Acta. 578, 59–74 (2006)

    Google Scholar 

  14. Ronconi, L., Marzano, C., Zanello, P., Corsini, M., Miolo, G., Maccà, C., Trevisan, A., Fregona, D.: Gold(III) dithiocarbamate derivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties. J. Med. Chem. 49, 1648–1657 (2006)

    Article  Google Scholar 

  15. Nhan B, Tuan M.: Electrochemical synthesis of polypyrrole for biosensor application. Int. J. Nanotechnol. 10, 154 (2013)

    Google Scholar 

  16. Tran, T., Chu, T., Do, P., Pham, D., Trieu, V., Huynh, D., Mai, A.: In-channel-grown polypyrrole nanowire for the detection of DNA hybridization in an electrochemical micro-fluidic biosensor. J. Nanomater. 2015, 1–7 (2015)

    Google Scholar 

Download references

Acknowledgements

This research is supported by The World Academy of Science (TWAS) under Grant no. 16-169 RG/PHYS/AS_I-FR3240293345.

Conflict of Interest Statement The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trieu Van Vu Quan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Vu Quan, T., Thinh, T.Q., Dương, L.B., Thuy, T.H., Xuan, C.T., Tuan, M.A. (2020). An Electrochemical DNA Sensor Based on Conducting Polymer Electrode. In: Van Toi , V., Le, T., Ngo, H., Nguyen, TH. (eds) 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7). BME 2018. IFMBE Proceedings, vol 69. Springer, Singapore. https://doi.org/10.1007/978-981-13-5859-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5859-3_62

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5858-6

  • Online ISBN: 978-981-13-5859-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics