Skip to main content

Natural Terpenes as Building Blocks for Green Chemistry

  • Chapter
  • First Online:
Plant Based “Green Chemistry 2.0”

Abstract

This chapter presents a complete picture of current knowledge on recent developments of extraction techniques of essential oils’ source of terpenes and their use not only in food ingredients as aromas, antioxidants or antimicrobials but also as synthons and solvents for green chemistry. The modern applications of terpenes and their original procedures are summarized in terms of their applications, benefits and future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  2. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  Google Scholar 

  3. Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37

    Article  CAS  Google Scholar 

  4. Blaser HU (1992) The chiral pool as a source of enantioselective catalysts and auxiliaries. Chem Rev 92:935–952

    Article  CAS  Google Scholar 

  5. Agar D (2005) Handbook of chiral chemicals, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  6. Hanessian S (1983) Total synthesis of natural products: the chiron approach. Pergamon Press, Oxford

    Google Scholar 

  7. Nakata M (2008) Monosaccharides as chiral pools for the synthesis of complex natural compounds. In: FraserReid BO, Tatsuta K, Thiem J (eds) Glycoscience, 2nd edn, vol. 2: Chapter 4.4. Springer-Verlag, Berlin, pp 957–994

    Chapter  Google Scholar 

  8. Chida N, Sato T (2012) Chiral pool synthesis: chiral pool syntheses starting from carbohydrates. In: Comprehensive chirality vol. 2. Elsevier, pp 207–239

    Google Scholar 

  9. Paek SM, Jeong M, Jo J, Heo YM, Han YT, Yun H (2016) Recent advances in substrate-controlled asymmetric induction derived from chiral pool α-amino acids for natural product synthesis. Molecules 21:951

    Article  Google Scholar 

  10. Ho TL (1992) Enantioselective synthesis. natural products from chiral terpenes. Wiley, New York

    Google Scholar 

  11. Money T, Wong MKC (1995) The use of cyclic Monoterpenoids as Enantiopure starting materials in natural product synthesis. Stud Nat Prod Chem 16:123–288

    Article  CAS  Google Scholar 

  12. Maimone TJ, Baran PS (2007) Modern synthetic efforts toward biologically active terpenes. Nat Chem Biol 3:396–407

    Article  CAS  Google Scholar 

  13. Jansen DJ, Shenvi RA (2014) Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med. Chem. 6:1127–1148

    Article  CAS  Google Scholar 

  14. Qiao T, Liang G (2016) Recent advances in terpenoid synthesis from China. Sci. China: Chem. 59:1142–1174

    Article  CAS  Google Scholar 

  15. Urabe D, Asaba T, Inoue M (2015) Convergent strategies in total syntheses of complex terpenoids. Chem Rev 115:9207–9231

    Article  CAS  Google Scholar 

  16. Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science 297:807–810

    Article  CAS  Google Scholar 

  17. De Oliveira AA, Da Silva ML, Da Silva MJ (2009) Palladium-catalysed oxidation of bicycle monoterpenes by hydrogen peroxide in acetonitrile solutions: a metal reoxidant-free and environmentally oxidative process. Catal Lett 130:424–431

    Article  Google Scholar 

  18. Vieira CG, de Freitas MC, de Oliveira KC, de Camargo Faria A, dos Santos EN, Gusevskaya EV (2015) Synthesis of fragrance compounds from renewable resources: the aqueous biphasic hydroformylation of acyclic terpenes. Catal Sci Technol 5:960–966

    Article  CAS  Google Scholar 

  19. Miyazawa M, Teranishi A, Ishikawa Y (2003) Components of the essential oil from Petasites japonicas. Flavour Frag. J. 18:231–233

    Article  CAS  Google Scholar 

  20. Loubidi M, Agustin D, Benharref A, Poli R (2014) Solvent-free epoxidation of himachalenes and their derivatives by TBHP using [MoO2(SAP)]2 as a catalyst. C R Chimie 17:549–556

    Article  CAS  Google Scholar 

  21. Rodilla JM, Neves PP, Pombal S, Rives V, Trujillano R, Díez D (2016) Hydrotalcite catalysis for the synthesis of new chiral building blocks. Nat Prod Res 30:834–840

    Article  CAS  Google Scholar 

  22. Bookin AS, Drits VA (2001) Layered double hydroxides: present and future. Crystal structure and X-ray identification of layered double hydroxides. In: Rives V (ed), Chapter 2. Nova Sci. Pub. Co, Inc., New York pp 39–92

    Google Scholar 

  23. Kryshtal GV, Zhdankina GM, Ignat’ev NV, Schulte M, Zlotin SG (2016) The orthoester Johnson–Claisen rearrangement of allylic terpenols in the presence of acidic ionic liquid. J Flu Chem 183:23–29

    Google Scholar 

  24. Zlotin SG, Kryshtal GV, Zhdankina GM, Sukhanova AA, Kucherenko AS, Smirnov BB, Tartakovsky VA (2014) Kinetic resolution of racemic (cyclohexyl)(geranyl)acetic acid. Mendeleev Commun 24:257–2259

    Article  CAS  Google Scholar 

  25. Cotta RF, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2017) Coupling of monoterpenic alkenes and alcohols with benzaldehyde catalyzed by silica-supported tungstophosphoric heteropoly acid. Catal Today 289:14–19

    Article  CAS  Google Scholar 

  26. Cotta RF, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2017) Heteropoly acid catalysts in upgrading of biorenewables: cycloaddition of aldehydes to monoterpenes in green solvents. Catalysis B Environ 217:92–99

    Article  CAS  Google Scholar 

  27. Saha P, Gogoi P, Saikia AK (2011) Synthesis of oxabicyclo[3.3.1]nonenes and substituted tetrahydropyrans via (3,5)-oxonium-ene reaction. Org Biomol Chem 9:4626–4634

    Article  CAS  Google Scholar 

  28. Luska KL, Migowski P, El Sayed S, Leitner W (2016) Bifunctional ruthenium nanoparticle-SILP Catalysts (RuNPs@SILP) for the hydrodeoxygenation of eucalyptol under batch and continuous flow conditions. ACS Sustain Chem Eng 4:6186–6192

    Article  CAS  Google Scholar 

  29. Mimoun H (1996) Catalytic opportunities in the flavor and fragrance industry. CHIMIA Int J Chem 50:620–625

    CAS  Google Scholar 

  30. Li Y, Fabiano-Tixier AS, Chemat F (2014) Essential oils as reagents in green chemistry, Springer

    Google Scholar 

  31. Selka A, Levesque N, Foucher D, Clarisse O, Chemat F, Touaibia M (2017) A Comparative study of solvent-free and highly efficient pinene hydrogenation over Pd on carbon, alumina, and silica supports. Org Process Res Dev 21(1):60–64

    Article  CAS  Google Scholar 

  32. Yara-Varon E, Selka A, Fabiano-Tixier AS, Canela-Garayoa R, Balcells M, Bily A, Touaibia M, Chemat F (2016) Solvent from forestry biomass. Pinane a stable terpene derived from pine trees by product to substitute n-hexane for the extraction of bioactive compounds. Green Chem 18:6596–6608

    Article  CAS  Google Scholar 

  33. Liu Y, Li L, Liu S, Xie C, Yu S (2016) Magnetically recyclable Ru immobilized on amine-functionalized magnetite nanoparticles and its high selectivity to prepare cis-pinane. J Mol Cat A Chem 424:269–275

    Article  CAS  Google Scholar 

  34. Hou S, Xie C, Zhong H, Yu S (2015) Mild water-promoted ruthenium nanoparticles as an efficient catalyst for the preparation of cis-rich pinane. RSC Adv 5:89552–89558

    Article  CAS  Google Scholar 

  35. Chemat F, Vian MA (eds) (2014) Alternative solvents for natural products extraction. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  36. Ernenwein C, Fréville V, Pezron I (2011) Les agrosolvants en extraction. In Chemat F (ed) Book chapter, Eco-Extraction du végétal. Procédés innovants et solvants alternatifs. Dunod, Paris

    Google Scholar 

  37. Roire J (1989) Les solvants. EREC, Puteaux

    Google Scholar 

  38. Hildebrand J, Scott RL (1950) The solubility of nonelectrolytes. Reinhold, New York

    Google Scholar 

  39. Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  40. Lang YH, Cao ZM, Jiang X (2005) Prediction of solvents extraction-the organochlorine pesticides in soil using solubility parameters. Talanta 66:249–252

    Article  CAS  Google Scholar 

  41. Srinivas K, King JW, Monrad JK, Howard LR, Hansen CM (2009) Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters. J Food Sci 74:342–354

    Article  Google Scholar 

  42. Filly A, Fabiano-Tixier A-S, Lemasson Y, Roy C, Fernandez X, Chemat F (2014) Extraction of aroma compounds in blackcurrant buds by alternative solvents: theoretical and experimental study. C R Chimie 17:1268–1275

    Google Scholar 

  43. Li Y, Fine F, Fabiano-Tixier A-S, Abert-Vian M, Carre P, Pages X, Chemat F (2014) Evaluation of alternative solvents for improvement of oil extraction from rapeseeds. C R Chimie 17:242–251

    Article  CAS  Google Scholar 

  44. Breil C, Meullemiestre A, Vian M, Chemat F (2016) Bio-based solvents for green extraction of lipids from oleaginous yeast biomass for sustainable aviation biofuel. Molecules 21:196

    Article  Google Scholar 

  45. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perk T2:799–805

    Article  Google Scholar 

  46. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  47. Sicaire A-G, Filly A, Abert Vian M, Fabiano-Tixier AS, Chemat F (2016) COSMO-RS assisted solvent screening for green extraction of natural products. In: Handbook of Green Chemistry. Wiley

    Google Scholar 

  48. Pozarska A, da Costa Mathews C, Wong M, Pencheva K (2013) Application of COSMO-RS as an excipient ranking tool in early formulation development. Eur J Pharm Sci 49:505–511

    Article  CAS  Google Scholar 

  49. Garcia-Chavez LY, Hermans AJ, Schuur B, de Haan AB (2012) COSMO-RS assisted solvent screening for liquid–liquid extraction of mono ethylene glycol from aqueous streams. Sep Purif Technol 97:2–10

    Article  CAS  Google Scholar 

  50. Benazzouz A, Moity L, Pierlot C et al (2014) Hansen approach versus COSMO-RS for predicting the solubility of an organic UV filter in cosmetic solvents. Colloids Surf Physicochem Eng Asp 458:101–109

    Article  CAS  Google Scholar 

  51. Moity L, Durand M, Benazzouz A et al (2012) Panorama of sustainable solvents using the COSMO-RS approach. Green Chem 14:1132

    Article  CAS  Google Scholar 

  52. Filly A, Fabiano-Tixier A-S, Fernandez X, Chemat F (2015) Alternative solvents for extraction of food aromas: experimental and COSMO-RS study. LWT-Food Sci Technol 61:33–40

    Article  CAS  Google Scholar 

  53. Sicaire A-G, Vian MA, Fine F, Carre P, Tostain S, Chemat F (2015) Experimental approach versus COSMO-RS assisted solvent screening for predicting the solubility of rapeseed oil. Oil seeds Fats Crops Lipids 22(4):D404

    Google Scholar 

  54. Tixier A-S, Chemat F (2017) A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane. Anal Bioanal Chem 409:3527–3539

    Article  CAS  Google Scholar 

  55. Toplisek T, Gustafson R (1995) Cleaning with D-limonenes: a substitute for chlorinated solvents. Precis Clean 3:17–20

    Google Scholar 

  56. Mamidipally PK, Liu SX (2004) First approach on rice bran oil extraction using limonene. Eur J Lipid Sci Tech 106:122–125

    Article  CAS  Google Scholar 

  57. Liu SX, Mamidipally PK (2005) Quality comparison of rice bran oil extracted with d-limonene and hexane. Cereal Chem 82:209–215

    Article  CAS  Google Scholar 

  58. Virot M, Tomao V, Ginies C, Visinoni F, Chemat F (2008) Green procedure with a green solvent for fats and oils’ determination Microwave—integrated Soxhlet using limonene followed by microwave clevenger distillation. J Chromatogr A 1196–1197:147–152

    Article  Google Scholar 

  59. Virot M, Tomao V, Ginies C, Chemat F (2008) Total lipid extraction of food using d-limonene as an alternative to n-hexane. Chromatographia 68:311–313

    Article  CAS  Google Scholar 

  60. Veillet S, Tomao V, Ruiz K, Chemat F (2010) Green procedure using limonene in the Dean-Stark apparatus for moisture determination in food products. Anal Chim Acta 674:49–52

    Article  CAS  Google Scholar 

  61. Chemat-Djenni Z, Ferhat MA, Tomao V, Chemat F (2010) Carotenoid extraction from tomato using a green solvent resulting from orange processing waste. J Essent Oil Bearing Plants 13:139–147

    Article  CAS  Google Scholar 

  62. Boukroufa M, Boutekedjiret C, Chemat F (2017) Development of a green procedure of citrus fruits waste processing to recover carotenoids. Res-Efficient Technol 3:252–262

    Article  Google Scholar 

  63. Bertouche S, Tomao V, Hellal A, Boutekedjiret C, Chemat F (2013) First approach on edible oil determination in oilseeds products using α-pinene. J Essent Oil research 25(6):439–443

    Article  CAS  Google Scholar 

  64. Dejoye Tanzi C, Abert Vian M, Ginies C, El maataoui M, Chemat F (2012) Terpenes as green solvents for extraction of oil from microalgae. Molecules 17:8196–8205

    Article  Google Scholar 

  65. Petkov G, Garcia G (2007) Which are fatty acids of the green alga Chlorella. Biochem Syst Ecol 35:281–285

    Article  CAS  Google Scholar 

  66. Plaza M, Santoyo S, Jaime L, Avalo B, Cifuentes A, Reglero G, García-Blairsy G, Señoráns FJ, Ibáñez E (2011) Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci Technol 46:245–253

    Article  Google Scholar 

  67. AOCS Official Method Ja 2a-46 (1993) American Oil Chemist’ Society, Champaign

    Google Scholar 

  68. Bertouche S, Tomao V, Ruiz K, Hellal A, Boutekedjiret C, Chemat F (2012) First approach on moisture determination in food products using α-pinene as an alternative solvent for dean–stark distillation. Food Chem 134:602–605

    Article  CAS  Google Scholar 

  69. Yatagai M, Sato T, Takahashi T (1984) Terpenes of leaf oils from Cupressaceae. Biochem Syst Ecol 13:377–385

    Article  Google Scholar 

  70. Dejoye Tanzi C, Abert Vian M, Chemat F (2013) New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. Biores Technol 134:271–275

    Article  CAS  Google Scholar 

  71. Chemat F, Rombaut N, Fabiano-Tixier AS, Birtic S, Roller M, Bily A (2017) New solvent for extraction and solubilisation, WO2017064424 (A1)

    Google Scholar 

  72. Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model system. Food Chem 69:167–174

    Article  CAS  Google Scholar 

  73. Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing activity of oregano essential oil. Food Chem 85:633–640

    Article  CAS  Google Scholar 

  74. Zaouali Y, Bouzaine T, Boussaid M (2010) Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem Toxicol 48:3144–3152

    Article  CAS  Google Scholar 

  75. Burt S (2004) Essential oil: their antibacterial properties and potential applications in foods. A Rev Int J Food Microbiol 94:223–253

    Article  CAS  Google Scholar 

  76. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–632

    Article  CAS  Google Scholar 

  77. Bajalan I, Rouzbahani R, Ghasemi Pirbalouti A, Maggi F (2017) Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind Crops Prod 107:305–311

    Article  CAS  Google Scholar 

  78. Solorzano-Santos F, Miranda-Novales MG (2011) Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol 23:136–141

    Article  Google Scholar 

  79. Nevas M, Korhonen AR, Lindstrom M (2004) Antibacterial efficiency of Finnish spice essential oils against pathogenic and spoilage bacteria. J Food Protect 67:199–202

    Article  CAS  Google Scholar 

  80. Xie Y, Wang Z, Huang Q, Zhang D (2017) Antifungal activity of several essential oils and major components against wood-rot fungi. Ind Crops Prod 108:278–285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Touaibia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Touaibia, M., Boutekedjiret, C., Perino, S., Chemat, F. (2019). Natural Terpenes as Building Blocks for Green Chemistry. In: Li, Y., Chemat, F. (eds) Plant Based “Green Chemistry 2.0”. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3810-6_7

Download citation

Publish with us

Policies and ethics