Skip to main content

Evolution of Early Atmosphere

  • Chapter
  • First Online:
Astrobiology
  • 2390 Accesses

Abstract

Earth’s early surface environment had great influence on the origin of life through formation of its building blocks. From geological and geochemical evidence, the Earth’s atmosphere and oceans appear to have existed since a very early period in the Earth’s history. Recent models of planet formation suggest that a significant amount of volatile elements that formed the Earth’s atmosphere and oceans was supplied to Earth during its formation. This very early supply of volatile elements is consistent with recent detailed analysis of isotopic compositions of terrestrial and extraterrestrial materials. Chemical equilibrium calculations showed that the volatile elements degassed by accreting bodies contained some reduced gases. Moreover, metallic iron in differentiated bodies accreting on Earth played an important role in reducing the surface environment through producing abundant hydrogen molecules from oceans. These recent studies indicate that the Earth’s early atmosphere was more reduced than previously thought, which would be an advantage for formation of the building blocks of life. After Earth’s formation, late accretion caused impact erosion and replacement of the pre-existing atmosphere and oceans. However, due to the complicated phenomena of impact erosion, it is difficult to make an accurate estimate of the loss and replacement of the atmosphere at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens TJ (1993) Impact erosion of terrestrial planetary atmospheres. Annu Rev Earth Planet Sci 21:525–555

    Article  CAS  Google Scholar 

  • Appel PWU, Fedo CM et al (1998) Recognizable primary volcanic and sedimentary features in a low-strain domain of the highly deformed, oldest known (~3.7–3.8 Gyr) Greenstone Belt, Isua, West Greenland. Terra Nova 10:57–62

    Article  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Article  CAS  Google Scholar 

  • Chen GQ, Ahrens TJ (1997) Erosion of terrestrial planet atmosphere by surface motion after a large impact. Phys Earth Planet Int 100:21–26

    Article  Google Scholar 

  • Dauphas N (2017) The isotopic nature of the Earth’s accreting material through time. Nature 541:521–524

    Article  CAS  Google Scholar 

  • Frank EA, Maier WD et al (2016) Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths. Contrib Mineral Petrol 171:29

    Article  Google Scholar 

  • Frost DJ, Mann U et al (2008) The redox state of the mantle during and just after core formation. Philos Trans R Soc A 366:4315–4337

    Article  CAS  Google Scholar 

  • Fukuzaki S, Sekine Y et al (2010) Impact-induced N2 production from ammonium sulfate: implications for the origin and evolution of N2 in Titan’s atmosphere. Icarus 209:715–722

    Article  CAS  Google Scholar 

  • Genda H (2016) Origin of Earth’s oceans: an assessment of the total amount, history and supply of water. Geochem J 50:27–42

    Article  CAS  Google Scholar 

  • Genda H, Abe Y (2003) Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164:149–162

    Article  Google Scholar 

  • Genda H, Abe Y (2005) Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433:842–844

    Article  CAS  Google Scholar 

  • Genda H, Ikoma M (2008) Origin of the ocean on the earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194:42–52

    Article  CAS  Google Scholar 

  • Genda H, Fujita T et al (2015) Resolution dependence of disruptive collisions between planetesimals in the gravity regime. Icarus 262:58–66

    Article  Google Scholar 

  • Genda H, Iizuka T et al (2017a) Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion. Earth Planet Sci Lett 470:87–95

    Article  CAS  Google Scholar 

  • Genda H, Brasser R et al (2017b) The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet Sci Lett 480:25–32

    Article  CAS  Google Scholar 

  • Genda H, Fujita T et al (2017c) Impact erosion model for gravity-dominated planetesimals. Icarus 294:234–246

    Article  Google Scholar 

  • Hamano Y, Ozima M (1978) Earth-atmosphere evolution model based on Ar isotopic data. In: Alexander EC Jr, Ozima M (eds) Terrestrial rare gases. Center for Academic Publ, Tokyo, pp 155–172

    Chapter  Google Scholar 

  • Hashimoto GL, Abe Y et al (2007) The chemical composition of the early terrestrial atmosphere: formation of a reducing atmosphere from CI-like material. J Geophys Res 112:E05010

    Article  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton Univ. Press, Princeton

    Google Scholar 

  • Kodama T, Genda H et al (2015) Rapid water loss can extend the lifetime of planetary habitability. Astrophys J 812:165

    Article  Google Scholar 

  • Kokubo E, Genda H (2010) Formation of terrestrial planets from protoplanets under a realistic accretion condition. Astrophy J Lett 714:L21–L25

    Article  Google Scholar 

  • Komiya T, Yamamoto S et al (2015) Geology of the Eoarchean, >3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: the oldest geological evidence for plate tectonics. Tectonophysics 662:40–66

    Article  CAS  Google Scholar 

  • Lange MA, Ahrens TJ (1982) The evolution of the impact-generated atmosphere. Icarus 51:96–120

    Article  CAS  Google Scholar 

  • Lissauer JJ, Stevenson DJ (2007) Formation of giant planets. In: Reipurth B et al (eds) Protostars and planets V. Univ Arizona Press, Tucson, pp 591–606

    Google Scholar 

  • Marchi S, Bottke WF et al (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511:578–582

    Article  CAS  Google Scholar 

  • Maruyama S, Komiya T (2011) The oldest pillow lavas, 3.8–3.7 Ga from the Isua supracrustal belt, SW Greenland: plate tectonics had already begun by 3.8 Ga. J Geogr 120:869–876

    Article  CAS  Google Scholar 

  • Melosh HJ, Vickery AM (1989) Impact erosion of the primordial atmosphere of Mars. Nature 338:487–489

    Article  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  • Mojzsis SJ, Harrison TM et al (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181

    Article  CAS  Google Scholar 

  • Morbidelli A, Chambers J et al (2000) Source regions and timescales for the delivery of water to the earth. Meteorit Planet Sci 35:1309–1320

    Article  CAS  Google Scholar 

  • Natta A, Grinin V et al (2000) Properties and evolution of disks around pre-main-sequence stars of intermediate mass. In: Mannings V et al (eds) Protostars and planets IV. Univ Arizona Press, Tucson, pp 559–588

    Google Scholar 

  • Neukum G, Ivanov BA (1994) Crater size distribution and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data. In: Gehrels T (ed) Hazards due to comets and asteroids. Univ Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • O’Brien DP, Walsh KJ et al (2014) Water delivery and giant impacts in the ‘grand tack’ scenario. Icarus 239:74–84

    Article  Google Scholar 

  • O’Neil J, Carlson RW et al (2008) Neodymium-142 evidence for hadean mafic crust. Science 321:1828–1831

    Article  Google Scholar 

  • Ozima M, Podosek FA (2002) Noble gas geochemistry, 2nd edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Ramirez RM, Kopparapu R et al (2013) Warming early Mars with CO2 and H2. Nat Geosci 7:59–63

    Article  Google Scholar 

  • Raymond SN, O’Brien DP et al (2009) Building the terrestrial planets: constrained accretion in the inner solar system. Icarus 203:644–662

    Article  Google Scholar 

  • Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    Article  CAS  Google Scholar 

  • Schaefer L, Fegley B (2007) Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186:462–483

    Article  CAS  Google Scholar 

  • Schaefer L, Fegley B (2010) Volatile element chemistry during metamorphism of ordinary chondritic material and some of its implications for the composition of asteroids. Icarus 205:483–496

    Article  CAS  Google Scholar 

  • Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2 I. Amino acids J Mol Evol 19:376–382

    Article  CAS  Google Scholar 

  • Shuvalov V (2009) Atmospheric erosion induced by oblique impacts. Meteorit Planet Sci 44:1095–1105

    Article  CAS  Google Scholar 

  • Svetsov VV (2007) Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the earth and Mars. Sol Syst Res 41:28–41

    Article  CAS  Google Scholar 

  • Tajika E, Matsui T (1992) Evolution of terrestrial proto-CO2 atmosphere coupled with thermal history of the earth. Earth Planet Sci Lett 113:251–266

    Article  CAS  Google Scholar 

  • Tera F, Papanastassiou DA et al (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21

    Article  CAS  Google Scholar 

  • Trail D, Watson EB et al (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82

    Article  CAS  Google Scholar 

  • Tyburczy JA, Frisch B et al (1986) Shock-induced volatile loss from a carbonaceous chondrite: implications for planetary accretion. Earth Planet Sci Lett 80:201–207

    Article  CAS  Google Scholar 

  • Urey HC (1952) On the early chemical history of the earth and the origin of life. Proc Natl Acad Sci U S A 38:351–363

    Article  CAS  Google Scholar 

  • Walsh KJ, Morbidelli A et al (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  CAS  Google Scholar 

  • Warren PH (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet Sci Lett 311:93–100

    Article  CAS  Google Scholar 

  • Wilde SA, Valley JW et al (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Genda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Genda, H. (2019). Evolution of Early Atmosphere. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_14

Download citation

Publish with us

Policies and ethics