Skip to main content

Polyglucosan Bodies in Aged Brain and Neurodegeneration: Cause or Consequence?

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Aging is one of the major risk factors for the onset of a number of idiopathic neurodegenerative disorders. It is not surprising therefore, that the aging process in the brain displays many of the structural and/or physiological changes seen in the brain affected with a neurodegenerative disorder. One of the major hallmarks of such changes includes the formation of proteinaceous and non-proteinaceous (carbohydrate or lipid) inclusions in the neuronal soma and processes. Studies in the recent past have shown a causal correlation between the proteinaceous inclusion and defects in proteolytic processes. However, the physiological basis and significance of the carbohydrate-rich inclusions in the brain have largely been ignored. The carbohydrate inclusions, often referred to as corpora amylacea or the polyglucosan bodies, are aggregates of abnormal forms of glycogen (often lesser branched as compared to normal glycogen), and the inclusions include a small component of proteins as well. Observed both in the neurodegenerative conditions and in the aged brain, whether the carbohydrate inclusions represent causative changes or the end-point changes is yet to be unequivocally resolved. Here, we review our current understanding of the carbohydrate-rich inclusions in the brain and discuss their potential roles in neuronal survival, aging, and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner MR, Barnwell J, Al-Chalabi A, Eisen A (2012) Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain 135:2883–2891

    Article  PubMed  Google Scholar 

  2. Ahmeti KB, Ajroud-Driss S, Al-Chalabi A, Andersen PM, Armstrong J, Birve A, Blauw HM, Brown RH, Bruijn L, Chen W et al (2013) Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol Aging 34:e357–e319

    Google Scholar 

  3. Bickford PC, Flowers A, Grimmig B (2017) Aging leads to altered microglial function that reduces brain resiliency increasing vulnerability to neurodegenerative diseases. Exp Gerontol,. in press 94:4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shankar SK (2010) Biology of aging brain. Indian J Pathol Microbiol 53:595–604

    Article  CAS  PubMed  Google Scholar 

  5. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  CAS  PubMed  Google Scholar 

  6. Thal DR, Del Tredici K, Braak H (2004) Neurodegeneration in normal brain aging and disease. Sci Aging Knowl Environ 2004:pe26

    Article  Google Scholar 

  7. Foster TC (2002) Regulation of synaptic plasticity in memory and memory decline with aging. Prog Brain Res 138:283–303

    Article  CAS  PubMed  Google Scholar 

  8. Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    Article  CAS  PubMed  Google Scholar 

  9. Mrak RE, Griffin ST, Graham DI (1997) Aging-associated changes in human brain. J Neuropathol Exp Neurol 56:1269–1275

    Article  CAS  PubMed  Google Scholar 

  10. Peters R (2006) Ageing and the brain. Postgrad Med J 82:84–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mittal S, Ganesh S (2010) Protein quality control mechanisms and neurodegenerative disorders: checks, balances and deadlocks. Neurosci Res 68:159–166

    Article  CAS  PubMed  Google Scholar 

  13. Nystrom T (2011) Spatial protein quality control and the evolution of lineage-specific ageing. Philos Trans R Soc Lond Ser B Biol Sci 366:71–75

    Article  CAS  Google Scholar 

  14. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gray DA, Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowl Environ 2005:re1

    Google Scholar 

  16. Terman A, Brunk UT (1998) Lipofuscin: mechanisms of formation and increase with age. APMIS 106:265–276

    Article  CAS  PubMed  Google Scholar 

  17. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  PubMed  Google Scholar 

  18. Puri R, Suzuki T, Yamakawa K, Ganesh S (2012) Dysfunctions in endosomal-lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet 21:175–184

    Article  PubMed  CAS  Google Scholar 

  19. Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y, Wuu J, Chao MV, Mufson EJ, Nixon RA et al (2010) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 68:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ginsberg SD, Mufson EJ, Counts SE, Wuu J, Alldred MJ, Nixon RA, Che S (2010) Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 22:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matej R, Botond G, Laszlo L, Kopitar-Jerala N, Rusina R, Budka H, Kovacs GG (2010) Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease. Exp Neurol 225:133–139

    Article  CAS  PubMed  Google Scholar 

  22. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kourtis N, Tavernarakis N (2011) Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 30:2520–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Motyl J, Wencel PL, Cieslik M, Strosznajder RP, Strosznajder JB (2017) Alpha-synuclein alters differently gene expression of Sirts, PARPs and other stress response proteins: implications for neurodegenerative disorders. Mol Neurobiol. in press

    Google Scholar 

  25. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827:65–75

    Article  CAS  PubMed  Google Scholar 

  26. Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154

    CAS  PubMed  Google Scholar 

  27. Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7:376–385

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    Article  CAS  PubMed  Google Scholar 

  29. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and "preclinical" Alzheimer’s disease. Ann Neurol 45:358–368

    Article  CAS  PubMed  Google Scholar 

  30. Kovacs T, Cairns NJ, Lantos PL (1999) beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491

    Article  CAS  PubMed  Google Scholar 

  31. Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161

    Article  PubMed  Google Scholar 

  32. Moronetti Mazzeo LE, Dersh D, Boccitto M, Kalb RG, Lamitina T (2012) Stress and aging induce distinct polyQ protein aggregation states. Proc Natl Acad Sci U S A 109:10587–10592

    Article  PubMed  PubMed Central  Google Scholar 

  33. Michalik A, Van Broeckhoven C (2003) Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 12(2):R173–R186

    Article  CAS  PubMed  Google Scholar 

  34. Auge E, Cabezon I, Pelegri C, Vilaplana J (2017) New perspectives on corpora amylacea in the human brain. Sci Rep 7:41807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29:265–295

    Article  CAS  PubMed  Google Scholar 

  36. Gilissen EP, Leroy K, Yilmaz Z, Kovari E, Bouras C, Boom A, Poncelet L, Erwin JM, Sherwood CC, Hof PR et al (2016) A neuronal aging pattern unique to humans and common chimpanzees. Brain Struct Funct 221:647–664

    Article  PubMed  Google Scholar 

  37. Seppanen A, Miettinen R, Alafuzoff I (2010) Neuronal collagen XVII is localized to lipofuscin granules. Neuroreport 21:1090–1094

    Article  PubMed  CAS  Google Scholar 

  38. Aterman K (1976) A historical note on the iodine-sulphuric acid reaction of amyloid. Histochemistry 49:131–143

    Article  CAS  PubMed  Google Scholar 

  39. Lafora GR, Glueck B (1911) Beitrag zur Histopathologie der myoklonischen Epilepsie. Zeitschrift für die gesamte Neurologie und Psychiatrie 6:1–14

    Article  Google Scholar 

  40. Bielschowsky M (1912) Beiträge zur Histopathologie der Ganglienzelle. J Psychol Neurol 18:513–521

    Google Scholar 

  41. de Leon GA (1974) Bielschowsky bodies: Lafora-like inclusions associated with atrophy of the lateral pallidum. Acta Neuropathol 30:183–188

    Article  PubMed  Google Scholar 

  42. Robitaille Y, Carpenter S, Karpati G, DiMauro SD (1980) A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: a report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora’s disease and normal ageing. Brain 103:315–336

    Article  CAS  PubMed  Google Scholar 

  43. Rees S (1976) A quantitative electron microscopic study of the ageing human cerebral cortex. Acta Neuropathol 36:347–362

    Article  CAS  PubMed  Google Scholar 

  44. Alder N (1953) On the nature, origin and distribution of the corpora amylacea of the brain with observations on some new staining reactions. J Ment Sci 99:689–697

    Article  CAS  PubMed  Google Scholar 

  45. Sakai M, Austin J, Witmer F, Trueb L (1969) Studies of corpora amylacea. I. Isolation and preliminary characterization by chemical and histochemical techniques. Arch Neurol 21:526–544

    Article  CAS  PubMed  Google Scholar 

  46. Ramsey HJ (1965) Ultrastructure of Corpora Amylacea. J Neuropathol Exp Neurol 24:25–39

    Article  CAS  PubMed  Google Scholar 

  47. Gertz HJ, Cervos-Navarro J, Frydl V, Schultz F (1985) Glycogen accumulation of the aging human brain. Mech Ageing Dev 31:25–35

    Article  CAS  PubMed  Google Scholar 

  48. Tate-Ostroff B, Majocha RE, Marotta CA (1989) Identification of cellular and extracellular sites of amyloid precursor protein extracytoplasmic domain in normal and Alzheimer disease brains. Proc Natl Acad Sci U S A 86:745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Preissig SH, Buhaug J (1978) Corpora amylacea in cerebrospinal fluid. A source of possible diagnostic error. Acta Cytol 22:511–514

    CAS  PubMed  Google Scholar 

  50. Takahashi K, Agari M, Nakamura H (1975) Intra-axonal Corpora amylacea in ventral and lateral horns of the spinal cord. Acta Neuropathol 31:151–158

    Article  CAS  PubMed  Google Scholar 

  51. Woodford B, Tso MO (1980) An ultrastructural study of the corpora amylacea of the optic nerve head and retina. Am J Ophthalmol 90:492–502

    Article  CAS  PubMed  Google Scholar 

  52. Rohn TT (2015) Corpora Amylacea in neurodegenerative diseases: cause or effect? Int J Neurol Neurother 2

    Google Scholar 

  53. Machado-Salas J, Avila-Costa MR, Guevara P, Guevara J, Duron RM, Bai D, Tanaka M, Yamakawa K, Delgado-Escueta AV (2012) Ontogeny of Lafora bodies and neurocytoskeleton changes in Laforin-deficient mice. Exp Neurol 236:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Hoof F, Hageman-Bal M (1967) Progressive familial myoclonic epilepsy with Lafora bodies. Electron microscopic and histochemical study of a cerebral biopsy. Acta Neuropathol 7:315–336

    Article  PubMed  Google Scholar 

  55. Yokoi S, Austin J, Witmer F, Sakai M (1968) Studies in myoclonus epilepsy (Lafora body form). I. Isolation and preliminary characterization of Lafora bodies in two cases. Arch Neurol 19:15–33

    Article  CAS  PubMed  Google Scholar 

  56. Striano P, Ackerley CA, Cervasio M, Girard JM, Turnbull J, Basso-De D, Caro ML, Striano S, Zara F, Minassian BA (2009) 22-year-old girl with status epilepticus and progressive neurological symptoms. Brain Pathol 19:727–730

    Article  PubMed  PubMed Central  Google Scholar 

  57. Busard HL, Renier WO, Gabreels FJ, Jaspar HH, Slooff JL, Janssen AJ, Van Haelst UJ (1987) Lafora disease: a quantitative morphological and biochemical study of the cerebral cortex. Clin Neuropathol 6:1–6

    CAS  PubMed  Google Scholar 

  58. Kaufman MA, Dwork AJ, Willson NJ, John S, Liu JD (1993) Late-onset Lafora’s disease with typical intraneuronal inclusions. Neurology 43:1246–1248

    Article  CAS  PubMed  Google Scholar 

  59. Hedberg-Oldfors C, Oldfors A (2015) Polyglucosan storage myopathies. Mol Asp Med 46:85–100

    Article  CAS  Google Scholar 

  60. Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, Akagi T, Gomi H, Suzuki T, Amano K et al (2002) Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet 11:1251–1262

    Article  CAS  PubMed  Google Scholar 

  61. Tagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado-Escueta AV, Minassian BA, Depaoli-Roach AA, Roach PJ (2007) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci U S A 104:19262–19266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roach PJ (2015) Glycogen phosphorylation and Lafora disease. Mol Asp Med 46:78–84

    Article  CAS  Google Scholar 

  63. DePaoli-Roach AA, Contreras CJ, Segvich DM, Heiss C, Ishihara M, Azadi P, Roach PJ (2015) Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 290:841–850

    Article  CAS  PubMed  Google Scholar 

  64. Nita DA, Mole SE, Minassian BA (2016) Neuronal ceroid lipofuscinoses. Epileptic Disord 18:73–88

    PubMed  Google Scholar 

  65. Adler D, Horoupian DS, Towfighi J, Gandolfi A, Suzuki K (1982) Status marmoratus and Bielschowsky bodies. A report of two cases and review of the literature. Acta Neuropathol 56:75–77

    Article  CAS  PubMed  Google Scholar 

  66. Wilson JD, Horoupian DS (2001) Bielschowsky bodies (Lafora bodies of Bielschowsky type): report of a case associated with Rosenthal fibers in the brain stem. Acta Neuropathol 102:505–509

    CAS  PubMed  Google Scholar 

  67. Yagishita S, Itoh Y, Nakano T, Amano N, Yokoi S, Hasegawa O, Tanaka T (1983) Pleomorphic intra-neuronal polyglucosan bodies mainly restricted to the palladium. A case report. Acta Neuropathol 62:159–163

    Article  CAS  PubMed  Google Scholar 

  68. Hunter AG, Martsolf JT, Baker CG, Reed MH (1978) Geroderma osteodysplastica. A report of two affected families. Hum Genet 40:311–324

    Article  CAS  PubMed  Google Scholar 

  69. Probst A, Sandoz P, Vanoni C, Baumann JU (1980) Intraneuronal polyglucosan storage restricted to the lateral pallidum (Bielschowsky bodies). A golgi, light, and electron microscopic study. Acta Neuropathol 51:119–126

    Article  CAS  PubMed  Google Scholar 

  70. Pisa D, Alonso R, Rabano A, Carrasco L (2016) Corpora Amylacea of brain tissue from neurodegenerative diseases are stained with specific antifungal antibodies. Front Neurosci 10:86

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ferraro LAD (1931) The histogenesis of amyloid bodies in thecentral nervous system. Arch Pathol 12:229–244

    Google Scholar 

  72. Singhrao SK, Neal JW, Piddlesden SJ, Newman GR (1994) New immunocytochemical evidence for a neuronal/oligodendroglial origin for corpora amylacea. Neuropathol Appl Neurobiol 20:66–73

    Article  CAS  PubMed  Google Scholar 

  73. Selmaj K, Pawlowska Z, Walczak A, Koziolkiewicz W, Raine CS, Cierniewski CS (2008) Corpora amylacea from multiple sclerosis brain tissue consists of aggregated neuronal cells. Acta Biochim Pol 55:43–49

    CAS  PubMed  Google Scholar 

  74. Korzhevskii DE, Giliarov AV (2007) Demonstration of nuclear protein neun in the human brain corpora amylacea. Morfologiia 131:75–76

    CAS  PubMed  Google Scholar 

  75. Jackson MC, Scollard DM, Mack RJ, Lenney JF (1994) Localization of a novel pathway for the liberation of GABA in the human CNS. Brain Res Bull 33:379–385

    Article  CAS  PubMed  Google Scholar 

  76. Buervenich S, Olson L, Galter D (2001) Nestin-like immunoreactivity of corpora amylacea in aged human brain. Brain Res Mol Brain Res 94:204–208

    Article  CAS  PubMed  Google Scholar 

  77. Dinda AK, Sarkar C, Roy S, Kharbanda K (1992) Immunohistochemical, ultrastructural & immunoelectron microscopic study of glial fibrillary acidic protein in corpora amylacea. Indian J Med Res 96:245–249

    CAS  PubMed  Google Scholar 

  78. Song W, Zukor H, Liberman A, Kaduri S, Arvanitakis Z, Bennett DA, Schipper HM (2014) Astroglial heme oxygenase-1 and the origin of corpora amylacea in aging and degenerating neural tissues. Exp Neurol 254:78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gray EG (1970) The fine structure of nerve. Comp Biochem Physiol 36:419–448

    Article  CAS  PubMed  Google Scholar 

  80. Jacobs JM, Cavanagh JB (1972) Aggregations of filaments in Schwann cells of spinal roots of the normal rat. J Neurocytol 1:161–167

    Article  CAS  PubMed  Google Scholar 

  81. Spencer PS, Thomas PK (1974) Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons. J Neurocytol 3:763–783

    Article  CAS  PubMed  Google Scholar 

  82. Powell HC, Ward HW, Garrett RS, Orloff MJ, Lampert PW (1979) Glycogen accumulation in the nerves and kidney of chronically diabetic rats. A quantitative electron microscopic study. J Neuropathol Exp Neurol 38:114–127

    Article  CAS  PubMed  Google Scholar 

  83. Iwaki T, Hamada Y, Tateishi J (1996) Advanced glycosylation end-products and heat shock proteins accumulate in the basophilic degeneration of the myocardium and the corpora amylacea of the glia. Pathol Int 46:757–763

    Article  CAS  PubMed  Google Scholar 

  84. Schipper HM, Cisse S (1995) Mitochondrial constituents of corpora amylacea and autofluorescent astrocytic inclusions in senescent human brain. Glia 14:55–64

    Article  CAS  PubMed  Google Scholar 

  85. Botez G, Rami A (2001) Immunoreactivity for Bcl-2 and C-Jun/AP1 in hippocampal corpora amylacea after ischaemia in humans. Neuropathol Appl Neurobiol 27:474–480

    Article  CAS  PubMed  Google Scholar 

  86. Singhrao SK, Morgan BP, Neal JW, Newman GR (1995) A functional role for corpora amylacea based on evidence from complement studies. Neurodegeneration 4:335–345

    Article  CAS  PubMed  Google Scholar 

  87. Puri R, Jain N, Ganesh S (2011) Increased glucose concentration results in reduced proteasomal activity and the formation of glycogen positive aggresomal structures. FEBS J 278:3688–3698

    Article  CAS  PubMed  Google Scholar 

  88. Groen AC, Coughlin M, Mitchison TJ (2011) Microtubule assembly in meiotic extract requires glycogen. Mol Biol Cell 22:3139–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Groen AC, Ngyuen PA, Field CM, Ishihara K, Mitchison TJ (2014) Glycogen-supplemented mitotic cytosol for analyzing Xenopus egg microtubule organization. Methods Enzymol 540:417–433

    Article  CAS  PubMed  Google Scholar 

  90. Suzuki Y, Akiyama K, Suu S (1978) Lafora-like inclusion bodies in the CNS of aged dogs. Acta Neuropathol 44:217–222

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki Y, Ohta K, Suu S (1979) Correlative studies of axonal spheroids and Lafora-like bodies in aged dogs. Acta Neuropathol 48:77–81

    Article  CAS  PubMed  Google Scholar 

  92. Marquez M, Perez L, Serafin A, Teijeira S, Navarro C, Pumarola M (2010) Characterisation of Lafora-like bodies and other polyglucosan bodies in two aged dogs with neurological disease. Vet J 183:222–225

    Article  CAS  PubMed  Google Scholar 

  93. Kamiya S, Suzuki Y, Daigo M (1990) Immunoreactivity of canine and feline polyglucosan bodies for monoclonal antibody against human polyglucosan. Acta Neuropathol 81:217–218

    Article  CAS  PubMed  Google Scholar 

  94. Yamanami S, Ishihara T, Takahashi M, Uchino F (1992) Comparative study of intraneuronal polyglucosan bodies in brains from patients with Lafora disease and aged dogs. Acta Pathol Jpn 42:787–792

    CAS  PubMed  Google Scholar 

  95. Atoji Y, Hori Y, Suzuki Y, Sugimura M (1987) Lectin histochemistry of canine polyglucosan bodies. Acta Neuropathol 73:177–180

    Article  CAS  PubMed  Google Scholar 

  96. Hajek I, Kettner F, Simerdova V, Rusbridge C, Wang P, Minassian BA, Palus V (2016) NHLRC1 repeat expansion in two beagles with Lafora disease. J Small Anim Pract 57:650–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nishio S, Morioka T, Kawamura T, Fukui K, Nonaka H, Matsushima M (2001) Corpora amylacea replace the hippocampal pyramidal cell layer in a patient with temporal lobe epilepsy. Epilepsia 42:960–962

    Article  CAS  PubMed  Google Scholar 

  98. Renkawek K, Bosman GJ (1995) Anion exchange proteins are a component of corpora amylacea in Alzheimer disease brain. Neuroreport 6:929–932

    Article  CAS  PubMed  Google Scholar 

  99. Notter T, Knuesel I (2013) Reelin immunoreactivity in neuritic varicosities in the human hippocampal formation of non-demented subjects and Alzheimer’s disease patients. Acta Neuropathol Commun 1:27

    Article  PubMed  PubMed Central  Google Scholar 

  100. Erdamar S, Zhu ZQ, Hamilton WJ, Armstrong DL, Grossman RG (2000) Corpora amylacea and heat shock protein 27 in Ammon’s horn sclerosis. J Neuropathol Exp Neurol 59:698–706

    Article  CAS  PubMed  Google Scholar 

  101. Gati I, Leel-Ossy L (2001) Heat shock protein 60 in corpora amylacea. Pathol Oncol Res 7:140–144

    Article  CAS  PubMed  Google Scholar 

  102. Martin JE, Mather K, Swash M, Garofalo O, Leigh PN, Anderton BH (1991) Heat shock protein expression in corpora amylacea in the central nervous system: clues to their origin. Neuropathol Appl Neurobiol 17:113–119

    Article  CAS  PubMed  Google Scholar 

  103. Ferlazzo E, Canafoglia L, Michelucci R, Gambardella A, Gennaro E, Pasini E, Riguzzi P, Plasmati R, Volpi L, Labate A et al (2014) Mild Lafora disease: clinical, neurophysiologic, and genetic findings. Epilepsia 55:e129–e133

    Article  CAS  PubMed  Google Scholar 

  104. Poyrazoglu HG, Karaca E, Per H, Gumus H, Onay H, Canpolat M, Canoz O, Ozkinay F, Kumandas S (2015) Three patients with lafora disease: different clinical presentations and a novel mutation. J Child Neurol 30:777–781

    Article  PubMed  Google Scholar 

  105. Kecmanovic M, Jovic N, Cukic M, Keckarevic-Markovic M, Keckarevic D, Stevanovic G, Romac S (2013) Lafora disease: severe phenotype associated with homozygous deletion of the NHLRC1 gene. J Neurol Sci 325:170–173

    Article  CAS  PubMed  Google Scholar 

  106. Lesca G, Boutry-Kryza N, de Toffol B, Milh M, Steschenko D, Lemesle-Martin M, Maillard L, Foletti G, Rudolf G, Nielsen JE et al (2010) Novel mutations in EPM2A and NHLRC1 widen the spectrum of Lafora disease. Epilepsia 51:1691–1698

    Article  CAS  PubMed  Google Scholar 

  107. Acharya JN, Satishchandra P, Asha T, Shankar SK (1993) Lafora’s disease in south India: a clinical, electrophysiologic, and pathologic study. Epilepsia 34:476–487

    Article  CAS  PubMed  Google Scholar 

  108. Ramachandran N, Girard JM, Turnbull J, Minassian BA (2009) The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 50(Suppl 5):29–36

    Article  CAS  PubMed  Google Scholar 

  109. Minassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S, Mungall AJ, Dunham I, Gardner R, Fong CY, Carpenter S et al (1998) Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 20:171–174

    Article  CAS  PubMed  Google Scholar 

  110. Chan EM, Young EJ, Ianzano L, Munteanu I, Zhao X, Christopoulos CC, Avanzini G, Elia M, Ackerley CA, Jovic NJ et al (2003) Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet 35:125–127

    Article  CAS  PubMed  Google Scholar 

  111. Ganesh S, Tsurutani N, Suzuki T, Hoshii Y, Ishihara T, Delgado-Escueta AV, Yamakawa K (2004) The carbohydrate-binding domain of Lafora disease protein targets Lafora polyglucosan bodies. Biochem Biophys Res Commun 313:1101–1109

    Article  CAS  PubMed  Google Scholar 

  112. Wang J, Stuckey JA, Wishart MJ, Dixon JE (2002) A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J Biol Chem 277:2377–2380

    Article  CAS  PubMed  Google Scholar 

  113. Singh PK, Singh S, Ganesh S (2012) The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters. Mol Cell Biol 32:652–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Singh PK, Singh S, Ganesh S (2013) Activation of serum/glucocorticoid-induced kinase 1 (SGK1) underlies increased glycogen levels, mTOR activation, and autophagy defects in Lafora disease. Mol Biol Cell 24:3776–3786

    Article  PubMed  PubMed Central  Google Scholar 

  115. Worby CA, Gentry MS, Dixon JE (2006) Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J Biol Chem 281:30412–30418

    Article  CAS  PubMed  Google Scholar 

  116. Tiberia E, Turnbull J, Wang T, Ruggieri A, Zhao XC, Pencea N, Israelian J, Wang Y, Ackerley CA, Wang P et al (2012) Increased laforin and laforin binding to glycogen underlie Lafora body formation in malin-deficient Lafora disease. J Biol Chem 287:25650–25659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Worby CA, Gentry MS, Dixon JE (2008) Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG). J Biol Chem 283:4069–4076

    Article  CAS  PubMed  Google Scholar 

  118. Liu Y, Zeng L, Ma K, Baba O, Zheng P, Liu Y, Wang Y (2014) Laforin-malin complex degrades polyglucosan bodies in concert with glycogen debranching enzyme and brain isoform glycogen phosphorylase. Mol Neurobiol 49:645–657

    Article  CAS  PubMed  Google Scholar 

  119. Sharma J, Rao SN, Shankar SK, Satishchandra P, Jana NR (2011) Lafora disease ubiquitin ligase malin promotes proteasomal degradation of neuronatin and regulates glycogen synthesis. Neurobiol Dis 44:133–141

    Article  CAS  PubMed  Google Scholar 

  120. Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado-Garcia JM et al (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3:667–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang W, Lohi H, Skurat AV, DePaoli-Roach AA, Minassian BA, Roach PJ (2007) Glycogen metabolism in tissues from a mouse model of Lafora disease. Arch Biochem Biophys 457:264–269

    Article  CAS  PubMed  Google Scholar 

  122. Lossos A, Meiner Z, Barash V, Soffer D, Schlesinger I, Abramsky O, Argov Z, Shpitzen S, Meiner V (1998) Adult polyglucosan body disease in Ashkenazi Jewish patients carrying the Tyr329Ser mutation in the glycogen-branching enzyme gene. Ann Neurol 44:867–872

    Article  CAS  PubMed  Google Scholar 

  123. Lamperti C, Salani S, Lucchiari S, Bordoni A, Ripolone M, Fagiolari G, Fruguglietti ME, Crugnola V, Colombo C, Cappellini A et al (2009) Neuropathological study of skeletal muscle, heart, liver, and brain in a neonatal form of glycogen storage disease type IV associated with a new mutation in GBE1 gene. J Inherit Metab Dis 32(Suppl 1):S161–S168

    Article  PubMed  Google Scholar 

  124. Sokal EM, Van Hoof F, Alberti D, de Ville de Goyet J, de Barsy T, Otte JB (1992) Progressive cardiac failure following orthotopic liver transplantation for type IV glycogenosis. Eur J Pediatr 151:200–203

    Article  CAS  PubMed  Google Scholar 

  125. Selby R, Starzl TE, Yunis E, Todo S, Tzakis AG, Brown BI, Kendall RS (1993) Liver transplantation for type I and type IV glycogen storage disease. Eur J Pediatr 152(Suppl 1):S71–S76

    Article  PubMed  PubMed Central  Google Scholar 

  126. Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89:537–552

    Article  CAS  PubMed  Google Scholar 

  127. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    Article  PubMed  Google Scholar 

  128. Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R∗,S∗]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)pro pyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321:45–50

    Article  CAS  PubMed  Google Scholar 

  129. Wang Y, Ma K, Wang P, Baba O, Zhang H, Parent JM, Zheng P, Liu Y, Minassian BA, Liu Y (2013) Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons. Mol Neurobiol 48:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Saez I, Duran J, Sinadinos C, Beltran A, Yanes O, Tevy MF, Martinez-Pons C, Milan M, Guinovart JJ (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34:945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sinadinos C, Valles-Ortega J, Boulan L, Solsona E, Tevy MF, Marquez M, Duran J, Lopez-Iglesias C, Calbo J, Blasco E et al (2014) Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 13:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Duran J, Tevy MF, Garcia-Rocha M, Calbo J, Milan M, Guinovart JJ (2012) Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med 4:719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N, Keppler J, Reeder SA, Langbaum JB et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 106:6820–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645

    Article  PubMed  PubMed Central  Google Scholar 

  135. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, Mintun MA (2010) APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 67:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen SH, Aronson MK (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189

    Article  CAS  PubMed  Google Scholar 

  137. Roberts GW, Lofthouse R, Allsop D, Landon M, Kidd M, Prusiner SB, Crow TJ (1988) CNS amyloid proteins in neurodegenerative diseases. Neurology 38:1534–1540

    Article  CAS  PubMed  Google Scholar 

  138. Elobeid A, Libard S, Leino M, Popova SN, Alafuzoff I (2016) Altered Proteins in the Aging Brain. J Neuropathol Exp Neurol 75:316–325

    Article  PubMed  PubMed Central  Google Scholar 

  139. Paudel HK, Li W (1999) Heparin-induced conformational change in microtubule-associated protein Tau as detected by chemical cross-linking and phosphopeptide mapping. J Biol Chem 274:8029–8038

    Article  CAS  PubMed  Google Scholar 

  140. Perez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J (1996) Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. J Neurochem 67:1183–1190

    Article  CAS  PubMed  Google Scholar 

  141. Rizzu P, Van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrand M, Ravid R, Oostra BA et al (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Hum Genet 64:414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Feany MB, Dickson DW (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 40:139–148

    Article  CAS  PubMed  Google Scholar 

  143. Chin SS, Goldman JE (1996) Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol 55:499–508

    Article  CAS  PubMed  Google Scholar 

  144. Spillantini MG, Goedert M, Crowther RA, Murrell JR, Farlow MR, Ghetti B (1997) Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci U S A 94:4113–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wilhelmsen KC, Lynch T, Pavlou E, Higgins M, Nygaard TG (1994) Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet 55:1159–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Buee-Scherrer V, Buee L, Hof PR, Leveugle B, Gilles C, Loerzel AJ, Perl DP, Delacourte A (1995) Neurofibrillary degeneration in amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam. Immunochemical characterization of tau proteins. Am J Pathol 146:924–932

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Love S, Bridges LR, Case CP (1995) Neurofibrillary tangles in Niemann-Pick disease type C. Brain 118 (. Pt 1:119–129

    Article  PubMed  Google Scholar 

  148. Auer IA, Schmidt ML, Lee VM, Curry B, Suzuki K, Shin RW, Pentchev PG, Carstea ED, Trojanowski JQ (1995) Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer’s disease. Acta Neuropathol 90:547–551

    Article  CAS  PubMed  Google Scholar 

  149. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Brudek T, Winge K, Rasmussen NB, Bahl JM, Tanassi J, Agander TK, Hyde TM, Pakkenberg B (2016) Altered alpha-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains. J Neurochem 136:172–185

    Article  CAS  PubMed  Google Scholar 

  151. Foulds PG, Yokota O, Thurston A, Davidson Y, Ahmed Z, Holton J, Thompson JC, Akiyama H, Arai T, Hasegawa M et al (2012) Post mortem cerebrospinal fluid alpha-synuclein levels are raised in multiple system atrophy and distinguish this from the other alpha-synucleinopathies, Parkinson’s disease and Dementia with Lewy bodies. Neurobiol Dis 45:188–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hurtig HI, Trojanowski JQ, Galvin J, Ewbank D, Schmidt ML, Lee VM, Clark CM, Glosser G, Stern MB, Gollomp SM et al (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54:1916–1921

    Article  CAS  PubMed  Google Scholar 

  153. Lippa CF, Schmidt ML, Lee VM, Trojanowski JQ (1999) Antibodies to alpha-synuclein detect Lewy bodies in many Down’s syndrome brains with Alzheimer’s disease. Ann Neurol 45:353–357

    Article  CAS  PubMed  Google Scholar 

  154. Spillantini MG (1999) Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy are alpha-synucleinopathies. Parkinsonism Relat Disord 5:157–162

    Article  CAS  PubMed  Google Scholar 

  155. Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, Rajput AH, Muenter MD, Kish SJ, Hornykiewicz O et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133:172–188

    Article  PubMed  Google Scholar 

  156. Trojanowski JQ, Lee VM (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch Neurol 55:151–152

    Article  CAS  PubMed  Google Scholar 

  157. Uchino A, Takao M, Hatsuta H, Sumikura H, Nakano Y, Nogami A, Saito Y, Arai T, Nishiyama K, Murayama S (2015) Incidence and extent of TDP-43 accumulation in aging human brain. Acta Neuropathol Commun 3:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Arai T, Mackenzie IR, Hasegawa M, Nonoka T, Niizato K, Tsuchiya K, Iritani S, Onaya M, Akiyama H (2009) Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 117:125–136

    Article  CAS  PubMed  Google Scholar 

  160. Behrouzi R, Liu X, Wu D, Robinson AC, Tanaguchi-Watanabe S, Rollinson S, Shi J, Tian J, Hamdalla HH, Ealing J et al (2016) Pathological tau deposition in Motor Neurone Disease and frontotemporal lobar degeneration associated with TDP-43 proteinopathy. Acta Neuropathol Commun 4:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Cairns NJ, Perrin RJ, Schmidt RE, Gru A, Green KG, Carter D, Taylor-Reinwald L, Morris JC, Gitcho MA, Baloh RH (2010) TDP-43 proteinopathy in familial motor neurone disease with TARDBP A315T mutation: a case report. Neuropathol Appl Neurobiol 36:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, Hatanpaa KJ, White CL 3rd, Bigio EH, Caselli R et al (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284:20329–20339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kametani F, Obi T, Shishido T, Akatsu H, Murayama S, Saito Y, Yoshida M, Hasegawa M (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6:23281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007

    Article  CAS  PubMed  Google Scholar 

  166. Schwab C, Arai T, Hasegawa M, Yu S, McGeer PL (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67:1159–1165

    Article  PubMed  Google Scholar 

  167. Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CA, Lehnert S, Pabst A, Uttner I, Tumani H, Lee VM et al (2008) TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 65:1481–1487

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yuen P, Baxter DW (1963) The morphology of Marinesco bodies (paranucleolar corpuscles) in the melanin-pigmented nuclei of the brain-stem. J Neurol Neurosurg Psychiatry 26:178–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Beach TG, Walker DG, Sue LI, Newell A, Adler CC, Joyce JN (2004) Substantia nigra Marinesco bodies are associated with decreased striatal expression of dopaminergic markers. J Neuropathol Exp Neurol 63:329–337

    Article  CAS  PubMed  Google Scholar 

  170. Ono S, Inoue K, Mannen T, Mitake S, Shirai T, Kanda F, Jinnai K, Takahashi K (1989) Intracytoplasmic inclusion bodies of the thalamus and the substantia nigra, and Marinesco bodies in myotonic dystrophy: a quantitative morphological study. Acta Neuropathol 77:350–356

    Article  CAS  PubMed  Google Scholar 

  171. Ono S, Inoue K, Mannen T, Kanda F, Jinnai K, Takahashi K (1987) Neuropathological changes of the brain in myotonic dystrophy--some new observations. J Neurol Sci 81:301–320

    Article  CAS  PubMed  Google Scholar 

  172. Anderton BH (1997) Changes in the ageing brain in health and disease. Philos Trans R Soc Lond Ser B Biol Sci 352:1781–1792

    Article  CAS  Google Scholar 

  173. Gibson PH, Tomlinson BE (1977) Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci 33:199–206

    Article  CAS  PubMed  Google Scholar 

  174. Schmidt ML, Lee VM, Trojanowski JQ (1989) Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Investig 60:513–522

    CAS  PubMed  Google Scholar 

  175. Mori H, Tomonaga M, Baba N, Kanaya K (1986) The structure analysis of Hirano bodies by digital processing on electron micrographs. Acta Neuropathol 71:32–37

    Article  CAS  PubMed  Google Scholar 

  176. Cartier L, Galvez S, Gajdusek DC (1985) Familial clustering of the ataxic form of Creutzfeldt-Jakob disease with Hirano bodies. J Neurol Neurosurg Psychiatry 48:234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Field EJ, Narang HK (1972) An electron-microscopic study of scrapie in the rat: further observations on "inclusion bodies" and virus-like particles. J Neurol Sci 17:347–364

    Article  CAS  PubMed  Google Scholar 

  178. Field EJ, Mathews JD, Raine CS (1969) Electron microscopic observations on the cerebellar cortex in kuru. J Neurol Sci 8:209–224

    Article  CAS  PubMed  Google Scholar 

  179. Schochet SS Jr, Lampert PW, Lindenberg R (1968) Fine structure of the Pick and Hirano bodies in a case of Pick’s disease. Acta Neuropathol 11:330–337

    Article  PubMed  Google Scholar 

  180. Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM (1968) The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies and "rod-like" structures as seen in Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. J Neuropathol Exp Neurol 27:167–182

    Article  CAS  PubMed  Google Scholar 

  181. Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 94:9866–9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616

    Article  CAS  PubMed  Google Scholar 

  183. Dei R, Takeda A, Niwa H, Li M, Nakagomi Y, Watanabe M, Inagaki T, Washimi Y, Yasuda Y, Horie K et al (2002) Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol 104:113–122

    Article  CAS  PubMed  Google Scholar 

  184. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93:2696–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sankhla CS (2017) Oxidative stress and Parkinson’s disease. Neurol India 65:269–270

    Article  PubMed  Google Scholar 

  186. Naduthota RM, Bharath RD, Jhunjhunwala K, Yadav R, Saini J, Christopher R, Pal PK (2017) Imaging biomarker correlates with oxidative stress in Parkinson’s disease. Neurol India 65:263–268

    Article  PubMed  Google Scholar 

  187. De Farias CC, Maes M, Bonifacio KL, Matsumoto AK, Bortolasci CC, Nogueira AS, Brinholi FF, Morimoto HK, de Melo LB, Moreira EG et al (2017) Parkinson’s disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways. CNS Neurol Disord Drug Targets. in press

    Google Scholar 

  188. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664

    Article  PubMed  Google Scholar 

  189. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jenner P (1996) Oxidative stress in Parkinson’s disease and other neurodegenerative disorders. Pathol Biol (Paris) 44:57–64

    CAS  Google Scholar 

  191. Pappolla MA, Omar RA, Kim KS, Robakis NK (1992) Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer’s disease. Am J Pathol 140:621–628

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67:269–274

    Article  CAS  PubMed  Google Scholar 

  193. Kimura A, Namekata K, Guo X, Noro T, Harada C, Harada T (2017) Targeting oxidative stress for treatment of glaucoma and optic neuritis. Oxidative Med Cell Longev 2017:2817252

    Article  CAS  Google Scholar 

  194. Lutsky MA, Zemskov AM, Savinykh VP, Smelyanets MA, Pozhidaeva YA (2016) The features of multiple sclerosis pathological progression verified by the dynamics of biochemical markers of oxidative stress. Zh Nevrol Psikhiatr Im S S Korsakova 116:21–26

    Article  CAS  PubMed  Google Scholar 

  195. Jun MH, Ryu HH, Jun YW, Liu T, Li Y, Lim CS, Lee YS, Kaang BK, Jang DJ, Lee JA (2017) Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS mutant R521C-positive aggregates contributes to neurite degeneration upon oxidative stress. Sci Rep 7:40474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Blasco H, Garcon G, Patin F, Veyrat-Durebex C, Boyer J, Devos D, Vourc’h P, Andres CR, Corcia P (2017) Panel of oxidative stress and inflammatory biomarkers in ALS: a pilot study. Can J Neurol Sci 44:90–95

    Article  PubMed  Google Scholar 

  197. Ikawa M, Okazawa H, Tsujikawa T, Matsunaga A, Yamamura O, Mori T, Hamano T, Kiyono Y, Nakamoto Y, Yoneda M (2015) Increased oxidative stress is related to disease severity in the ALS motor cortex: a PET study. Neurology 84:2033–2039

    Article  CAS  PubMed  Google Scholar 

  198. Roma-Mateo C, Aguado C, Garcia-Gimenez JL, Knecht E, Sanz P, Pallardo FV (2015) Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radic Biol Med 88:30–41

    Article  CAS  PubMed  Google Scholar 

  199. Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR, Chakrabartty A (2004) Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem 279:15499–15504

    Article  CAS  PubMed  Google Scholar 

  200. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44:819–824

    Article  CAS  PubMed  Google Scholar 

  201. Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654

    Article  CAS  PubMed  Google Scholar 

  202. Taylor RC (2016) Aging and the UPR(ER). Brain Res 1648:588–593

    Article  CAS  PubMed  Google Scholar 

  203. Brown MK, Chan MT, Zimmerman JE, Pack AI, Jackson NE, Naidoo N (2014) Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis. Neurobiol Aging 35:1431–1441

    Article  CAS  PubMed  Google Scholar 

  204. Brown MK, Naidoo N (2012) The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 3:263

    PubMed  PubMed Central  Google Scholar 

  205. Naidoo N, Zhu J, Zhu Y, Fenik P, Lian J, Galante R, Veasey S (2011) Endoplasmic reticulum stress in wake-active neurons progresses with aging. Aging Cell 10:640–649

    Article  CAS  PubMed  Google Scholar 

  206. Salminen A, Kaarniranta K (2010) ER stress and hormetic regulation of the aging process. Ageing Res Rev 9:211–217

    Article  CAS  PubMed  Google Scholar 

  207. Puzianowska-Kuznicka M, Kuznicki J (2009) The ER and ageing II: calcium homeostasis. Ageing Res Rev 8:160–172

    Article  CAS  PubMed  Google Scholar 

  208. Naidoo N, Ferber M, Master M, Zhu Y, Pack AI (2008) Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J Neurosci 28:6539–6548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Duran-Aniotz C, Martinez G, Hetz C (2014) Memory loss in Alzheimer’s disease: are the alterations in the UPR network involved in the cognitive impairment? Front Aging Neurosci 6:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28:67–78

    Article  CAS  PubMed  Google Scholar 

  211. Tessitore A, Del PMM, Sano R, Ma Y, Mann L, Ingrassia A, Laywell ED, Steindler DA, Hendershot LM, d’Azzo A (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753–766

    Article  CAS  PubMed  Google Scholar 

  212. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22:5435–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH (2003) Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J Biol Chem 278:29496–29501

    Article  CAS  PubMed  Google Scholar 

  215. Tobisawa S, Hozumi Y, Arawaka S, Koyama S, Wada M, Nagai M, Aoki M, Itoyama Y, Goto K, Kato T (2003) Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem Biophys Res Commun 303:496–503

    Article  CAS  PubMed  Google Scholar 

  216. Southwood CM, Garbern J, Jiang W, Gow A (2002) The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    Article  CAS  PubMed  Google Scholar 

  218. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Vernia S, Rubio T, Heredia M, Rodriguez de Cordoba S, Sanz P (2009) Increased endoplasmic reticulum stress and decreased proteasomal function in lafora disease models lacking the phosphatase laforin. PLoS One 4:e5907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Lonka L, Kyttala A, Ranta S, Jalanko A, Lehesjoki AE (2000) The neuronal ceroid lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum. Hum Mol Genet 9:1691–1697

    Article  CAS  PubMed  Google Scholar 

  221. Cuervo AM, Dice JF (1998) How do intracellular proteolytic systems change with age? Front Biosci 3:d25–d43

    Article  CAS  PubMed  Google Scholar 

  222. Cuervo AM, Dice JF (2000) When lysosomes get old. Exp Gerontol 35:119–131

    Article  CAS  PubMed  Google Scholar 

  223. Wong YC, Holzbaur EL (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Shachar T, Lo Bianco C, Recchia A, Wiessner C, Raas-Rothschild A, Futerman AH (2011) Lysosomal storage disorders and Parkinson’s disease: Gaucher disease and beyond. Mov Disord 26:1593–1604

    Article  PubMed  Google Scholar 

  225. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G et al (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Nixon RA, Yang DS, Lee JH (2008) Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4:590–599

    Article  CAS  PubMed  Google Scholar 

  227. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  CAS  PubMed  Google Scholar 

  228. Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224

    Article  CAS  PubMed  Google Scholar 

  229. Li Q, Liu Y, Sun M (2017) Autophagy and Alzheimer’s Disease. Cell Mol Neurobiol 37:377–388

    Article  CAS  PubMed  Google Scholar 

  230. Kizilarslanoglu MC, Ulger Z (2015) Role of autophagy in the pathogenesis of Alzheimer disease. Turk J Med Sci 45:998–1003

    Article  CAS  PubMed  Google Scholar 

  231. Milisav I, Suput D, Ribaric S (2015) Unfolded Protein Response and Macroautophagy in Alzheimer’s, Parkinson’s and Prion Diseases. Molecules 20:22718–22756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Knecht E, Aguado C, Sarkar S, Korolchuk VI, Criado-Garcia O, Vernia S, Boya P, Sanz P, Rodriguez de Cordoba S, Rubinsztein DC (2010) Impaired autophagy in Lafora disease. Autophagy 6:991–993

    Article  PubMed  PubMed Central  Google Scholar 

  233. Zheng S, Clabough EB, Sarkar S, Futter M, Rubinsztein DC, Zeitlin SO (2010) Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet 6:e1000838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO et al (2005) Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    Article  PubMed  Google Scholar 

  236. Petersen A, Larsen KE, Behr GG, Romero N, Przedborski S, Brundin P, Sulzer D (2001) Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet 10:1243–1254

    Article  CAS  PubMed  Google Scholar 

  237. Moix Queralto J (1989) Validation of the University of Alabama at Birmingham (UAB) scale of behavioral pain. Med Clin (Barc) 93:396–397

    CAS  Google Scholar 

  238. Kharel P, McDonough J, Basu S (2016) Evidence of extensive RNA oxidation in normal appearing cortex of multiple sclerosis brain. Neurochem Int 92:43–48

    Article  CAS  PubMed  Google Scholar 

  239. Polachini CR, Spanevello RM, Zanini D, Baldissarelli J, Pereira LB, Schetinger MR, da Cruz IB, Assmann CE, Bagatini MD, Morsch VM (2016) Evaluation of delta-aminolevulinic dehydratase activity, oxidative stress biomarkers, and vitamin D levels in patients with multiple sclerosis. Neurotox Res 29:230–242

    Article  CAS  PubMed  Google Scholar 

  240. Emamgholipour S, Hossein-Nezhad A, Sahraian MA, Askarisadr F, Ansari M (2016) Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci 145:34–41

    Article  CAS  PubMed  Google Scholar 

  241. Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol 277:58–67

    Article  CAS  PubMed  Google Scholar 

  242. Vollrath JT, Sechi A, Dreser A, Katona I, Wiemuth D, Vervoorts J, Dohmen M, Chandrasekar A, Prause J, Brauers E et al (2014) Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis 5:e1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Kim JH, Kwak HB, Thompson LV, Lawler JM (2013) Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy. J Muscle Res Cell Motil 34:1–13

    Article  CAS  PubMed  Google Scholar 

  244. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  246. Liu XS, Chopp M, Zhang XG, Zhang RL, Buller B, Hozeska-Solgot A, Gregg SR, Zhang ZG (2009) Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke. J Cereb Blood Flow Metab 29:297–307

    Article  PubMed  CAS  Google Scholar 

  247. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  CAS  PubMed  Google Scholar 

  248. Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, Gibson SB (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4:195–204

    Article  CAS  PubMed  Google Scholar 

  249. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22:750–762

    Article  PubMed  Google Scholar 

  250. Borsello T, Croquelois K, Hornung JP, Clarke PG (2003) N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci 18:473–485

    Article  PubMed  Google Scholar 

  251. Vernace VA, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6:599–606

    Article  CAS  PubMed  Google Scholar 

  252. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Garyali P, Siwach P, Singh PK, Puri R, Mittal S, Sengupta S, Parihar R, Ganesh S (2009) The malin-laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system. Hum Mol Genet 18:688–700

    Article  CAS  PubMed  Google Scholar 

  254. Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson HL (2008) The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 283:26436–26443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, Ramasamy K, Mullin K, Menon R, Sampson AJ, Hsiao MY et al (2005) Family-based association between Alzheimer’s disease and variants in UBQLN1. N Engl J Med 352:884–894

    Article  CAS  PubMed  Google Scholar 

  256. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    Article  CAS  PubMed  Google Scholar 

  257. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  258. Rao SN, Maity R, Sharma J, Dey P, Shankar SK, Satishchandra P, Jana NR (2010) Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Hum Mol Genet 19:4726–4734

    Article  CAS  PubMed  Google Scholar 

  259. Cisse S, Perry G, Lacoste-Royal G, Cabana T, Gauvreau D (1993) Immunochemical identification of ubiquitin and heat-shock proteins in corpora amylacea from normal aged and Alzheimer’s disease brains. Acta Neuropathol 85:233–240

    Article  CAS  PubMed  Google Scholar 

  260. Liu HM, Anderson K, Caterson B (1987) Demonstration of a keratan sulfate proteoglycan and a mannose-rich glycoconjugate in corpora amylacea of the brain by immunocytochemical and lectin-binding methods. J Neuroimmunol 14:49–60

    Article  CAS  PubMed  Google Scholar 

  261. Day RJ, Mason MJ, Thomas C, Poon WW, Rohn TT (2015) Caspase-Cleaved Tau Co-Localizes with Early Tangle Markers in the Human Vascular Dementia Brain. PLoS One 10:e0132637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Wilhelmus MM, Verhaar R, Bol JG, van Dam AM, Hoozemans JJ, Rozemuller AJ, Drukarch B (2011) Novel role of transglutaminase 1 in corpora amylacea formation? Neurobiol Aging 32:845–856

    Article  CAS  PubMed  Google Scholar 

  263. Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995–2011

    Article  CAS  PubMed  Google Scholar 

  264. Hoyaux D, Decaestecker C, Heizmann CW, Vogl T, Schafer BW, Salmon I, Kiss R, Pochet R (2000) S100 proteins in Corpora amylacea from normal human brain. Brain Res 867:280–288

    Article  CAS  PubMed  Google Scholar 

  265. Sharma J, Mukherjee D, Rao SN, Iyengar S, Shankar SK, Satishchandra P, Jana NR (2013) Neuronatin-mediated aberrant calcium signaling and endoplasmic reticulum stress underlie neuropathology in Lafora disease. J Biol Chem 288:9482–9490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Manetto V, Abdul-Karim FW, Perry G, Tabaton M, Autilio-Gambetti L, Gambetti P (1989) Selective presence of ubiquitin in intracellular inclusions. Am J Pathol 134:505–513

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Meng H, Zhang X, Blaivas M, Wang MM (2009) Localization of blood proteins thrombospondin1 and ADAMTS13 to cerebral corpora amylacea. Neuropathology 29:664–671

    Article  PubMed  PubMed Central  Google Scholar 

  268. Balea IA, Illes P, Schobert R (2006) Affinity of corpora amylacea for oligonucleotides: sequence dependency and proteinaceous binding motif. Neuropathology 26:277–282

    Article  PubMed  Google Scholar 

  269. Lewis PD, Evans DJ, Shambayati B (1990) Immunocytochemical and lectin-binding studies on Lafora bodies. Clin Neuropathol 9:7–9

    CAS  PubMed  Google Scholar 

  270. Manich G, Cabezon I, Auge E, Pelegri C, Vilaplana J (2016) Periodic acid-Schiff granules in the brain of aged mice: From amyloid aggregates to degenerative structures containing neo-epitopes. Ageing Res Rev 27:42–55

    Article  CAS  PubMed  Google Scholar 

  271. Jucker M, Bondolfi L, Calhoun ME, Long JM, Ingram DK (2000) Structural brain aging in inbred mice: potential for genetic linkage. Exp Gerontol 35:1383–1388

    Article  CAS  PubMed  Google Scholar 

  272. Gabor LJ, Srivastava M (2010) Polyglucosan inclusions (Lafora bodies) in a gray-headed flying fox (Pteropus poliocephalus). J Vet Diagn Investig 22:303–304

    Article  Google Scholar 

  273. Suzuki Y, Ohta K, Kamiya S, Suu S (1980) Topographic distribution pattern of Lafora-like bodies in the spinal cord of some animals. Acta Neuropathol 49:159–161

    Article  CAS  PubMed  Google Scholar 

  274. Borras D, Ferrer I, Pumarola M (1999) Age-related changes in the brain of the dog. Vet Pathol 36:202–211

    Article  CAS  PubMed  Google Scholar 

  275. Cavanagh JB, Jones HB (2000) Glycogenosomes in the aging rat brain: their occurrence in the visual pathways. Acta Neuropathol 99:496–502

    Article  CAS  PubMed  Google Scholar 

  276. Kamiya S, Suzuki Y, Yamano S, Daigo M (1991) Lectin histochemistry of feline polyglucosan bodies. J Comp Pathol 104:141–145

    Article  CAS  PubMed  Google Scholar 

  277. Kamiya S, Suzuki Y (1989) Polyglucosan bodies in the brain of the cat. J Comp Pathol 101:263–267

    Article  CAS  PubMed  Google Scholar 

  278. Hall DG, Steffens WL, Lassiter L (1998) Lafora bodies associated with neurologic signs in a cat. Vet Pathol 35:218–220

    Article  CAS  PubMed  Google Scholar 

  279. Yanai T, Masegi T, Iwanaka M, Yoshida K, Ueda K, Suzuki Y, Kamiya S (1994) Polyglucosan bodies in the brain of a cow. Acta Neuropathol 88:75–77

    Article  CAS  PubMed  Google Scholar 

  280. Simmons MM (1994) Lafora disease in the cow? J Comp Pathol 110:389–401

    Article  CAS  PubMed  Google Scholar 

  281. Tigges J, Herndon JG, Rosene DL (1995) Mild age-related changes in the dentate gyrus of adult rhesus monkeys. Acta Anat (Basel) 153:39–48

    Article  CAS  Google Scholar 

  282. Tokutake S, Nagase H, Morisaki S, Oyanagi S (1995) X-ray microprobe analysis of corpora amylacea. Neuropathol Appl Neurobiol 21:269–273

    Article  CAS  PubMed  Google Scholar 

  283. Singhrao SK, Neal JW, Newman GR (1993) Corpora amylacea could be an indicator of neurodegeneration. Neuropathol Appl Neurobiol 19:269–276

    Article  CAS  PubMed  Google Scholar 

  284. Das A, Balan S, Mathew A, Radhakrishnan V, Banerjee M, Radhakrishnan K (2011) Corpora amylacea deposition in the hippocampus of patients with mesial temporal lobe epilepsy: a new role for an old gene. Indian J Hum Genet 17(Suppl 1):S41–S47

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Radhakrishnan A, Radhakrishnan K, Radhakrishnan VV, Mary PR, Kesavadas C, Alexander A, Sarma PS (2007) Corpora amylacea in mesial temporal lobe epilepsy: clinico-pathological correlations. Epilepsy Res 74:81–90

    Article  PubMed  Google Scholar 

  286. Devinsky O (2004) Diagnosis and treatment of temporal lobe epilepsy. Rev Neurol Dis 1:2–9

    PubMed  Google Scholar 

  287. Wieser HG, Epilepsy ICoNo (2004) ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45:695–714

    Article  PubMed  Google Scholar 

  288. Cherian PJ, Radhakrishnan VV, Radhakrishnan K (2003) The significance of corpora amylacea in mesial temporal lobe epilepsy. Neurol India 51:277–279

    PubMed  Google Scholar 

  289. Chung MH, Horoupian DS (1996) Corpora amylacea: a marker for mesial temporal sclerosis. J Neuropathol Exp Neurol 55:403–408

    Article  CAS  PubMed  Google Scholar 

  290. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  291. Ghosh R, Tabrizi SJ (2015) Clinical Aspects of Huntington’s Disease. Curr Top Behav Neurosci 22:3–31

    Article  CAS  PubMed  Google Scholar 

  292. Averback P (1981) Parasynaptic corpora amylacea in the striatum. Arch Pathol Lab Med 105:334–335

    CAS  PubMed  Google Scholar 

  293. Takeda N, Kishimoto Y, Yokota O (2012) Pick’s disease. Adv Exp Med Biol 724:300–316

    Article  CAS  PubMed  Google Scholar 

  294. Hodges JR (2001) Frontotemporal dementia (Pick’s disease): clinical features and assessment. Neurology 56:6–10

    Article  Google Scholar 

  295. Loma I, Heyman R (2011) Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 9:409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Milone R, Valetto A, Battini R, Bertini V, Valvo G, Cioni G, Sicca F (2016) Focal cortical dysplasia, microcephaly and epilepsy in a boy with 1q21.1-q21.3 duplication. Eur J Med Genet 59:278–282

    Article  PubMed  Google Scholar 

  297. Estupinan-Diaz BO, Morales-Chacon LM, Garcia-Maeso I, Lorigados-Pedre L, Baez-Martin M, Garcia-Navarro ME, Trapaga-Quincoses O, Quintanal-Cordero N, Prince-Lopez J, Bender-del Busto JE et al (2015) Corpora amylacea in the neocortex in patients with temporal lobe epilepsy and focal cortical dysplasia. Neurologia 30:90–96

    Article  CAS  PubMed  Google Scholar 

  298. Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, Sun W, Goldman S, Blekot S, Nielsen M et al (2015) Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 6:6807

    Article  CAS  PubMed  Google Scholar 

  299. Saraiva LM, Seixas da Silva GS, Galina A, da-Silva WS, Klein WL, Ferreira ST, De Felice FG (2010) Amyloid-beta triggers the release of neuronal hexokinase 1 from mitochondria. PLoS One 5:e15230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J et al (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413

    Article  CAS  PubMed  Google Scholar 

  301. Kakhlon O, Glickstein H, Feinstein N, Liu Y, Baba O, Terashima T, Akman HO, Dimauro S, Lossos A (2013) Polyglucosan neurotoxicity caused by glycogen branching enzyme deficiency can be reversed by inhibition of glycogen synthase. J Neurochem 127:101–113

    CAS  PubMed  Google Scholar 

  302. Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3

    Article  CAS  Google Scholar 

  303. Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, Hamprecht B (2003) Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem 85:73–81

    Article  CAS  PubMed  Google Scholar 

  304. Herszberg B, Mata X, Giulotto E, Decaunes P, Piras FM, Chowdhary BP, Chaffaux S, Guerin G (2007) Characterization of the equine glycogen debranching enzyme gene (AGL): Genomic and cDNA structure, localization, polymorphism and expression. Gene 404:1–9

    Article  CAS  PubMed  Google Scholar 

  305. Narahara E, Makino Y, Omichi K (2001) Glycogen debranching enzyme in bovine brain. J Biochem 130:465–470

    Article  CAS  PubMed  Google Scholar 

  306. Rai A, Singh PK, Singh V, Kumar V, Mishra R, Thakur AK, Mahadevan A, Shankar SK, Jana NR, Ganesh S (2018) Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis 9(2)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Science and Engineering Research Board (SERB) (Grant number: SB/SO/HS-059/2013) and the University Grants Commission (UGC) (Grant number: F. NO. 6-10/2017 [IC]), and Department of Biotechnology (DBT) (Grant number: BT/HRD/35/01/01/2017), Government of India, for funding research projects on the role of glycogen in neurodegeneration, and A.R. thanks the Council of Scientific and Industrial Research, Government of India, for a research fellowship. The authors also express their gratitude to Dr. S.K Shankar and Dr. Anita Mahadevan of NIMHANS Bangalore for the gift of human brain sections from their tissue repository (Human Brain Bank). SG is P.K. Kelkar Chair Professor at IIT Kanpur. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Ganesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, A., Ganesh, S. (2019). Polyglucosan Bodies in Aged Brain and Neurodegeneration: Cause or Consequence?. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_4

Download citation

Publish with us

Policies and ethics