Skip to main content

Brain-Inspired Perception, Motion and Control

  • Chapter
  • First Online:
Brain-Inspired Intelligence and Visual Perception

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 715 Accesses

Abstract

In this chapter, a possible solution for the future real implementation of brain-inspired perception (vision, audition and tactile), motion (the optimal path planning) and control (robots’ behavior management) is further presented. Based on the results from Chaps. 25, a conceptual model is established to evaluate cognition efficiency of the vision–brain, taking danger recognition as an example. Based on the vision hypothesis, the underwater robots with a deep vision system—single-shot multibox detector (SSD)—can preliminarily link the robotic vision cognition module with the brain-inspired perception, motion and control. Such a deep vision system can also be utilized to further enhance the performance of planetary exploration wheeled mobile robot in Chap. 5 or other robots. Core functional modules for future rebuilding a real vision–brain, along with the major principles to implement a real brain cognition, are presented, which include memory, thinking, imagination, feeling, speaking and other aspects associated with visual perception . Realization of a vision–brain not only includes the fusion of sensors, but also includes the fusion of feature and knowledge. Deep robotic vision is strongly suggested to be introduced into the future advanced robotic control system. At the end of this chapter, the intelligence extremes of the vision–brain and the necessity for the avoidance of robots’ threatening to human are theoretically analyzed, and therefore, the necessity to set an up limit for the development of artificial intelligence is theoretically demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bekhouch, I. Bouchrika, N. Doghmane, Improving view random access via increasing hierarchical levels for multi-view video coding. IEEE Trans. Consum. Electron. 62(4), 437–445 (2017)

    Article  Google Scholar 

  2. R. Bhatt, R. Datta, A two-tier strategy for priority based critical event surveillance with wireless multimedia sensors. Wireless Netw. 22(1), 1–18 (2016)

    Article  Google Scholar 

  3. J. Rajeshwari, K. Karibasappa, Adaboost modular tensor locality preservative projection: face detection in video using Adaboost modular-based tensor locality preservative projections. IET Comput. Vision 10(7), 670–678 (2017)

    Article  Google Scholar 

  4. Y. Zhang, Q.Z. Li, F.N. Zang, Ship detection for visual maritime surveillance from non-stationary platforms. Ocean Eng. 141(9), 53–63 (2017)

    Article  Google Scholar 

  5. A. Abrardo, M. Martalò, G. Ferrari, Information fusion for efficient target detection in large-scale surveillance wireless sensor networks. Inform. Fusion 38(11), 55–64 (2017)

    Article  Google Scholar 

  6. S. Murayama, M. Haseyama, A note on traffic flow measurement for traffic surveillance video: reduction of performance degradation in various environments. Infect. Dis. Clin. North Am. 23(2), 209–214 (2009)

    Google Scholar 

  7. A.E. Maadi, X. Maldague, Outdoor infrared video surveillance: a novel dynamic technique for the subtraction of a changing background of IR images. Infrared Phys. Technol. 49(3), 261–265 (2007)

    Article  Google Scholar 

  8. K. Srinivasan, K. Porkumaran, G. Sainarayanan, Background subtraction techniques for human body segmentation in indoor video surveillance. J. Sci. Ind. Res. 73(5), 342–345 (2014)

    Google Scholar 

  9. H. Sun, T. Tan, Spatio-temporal segmentation for video surveillance. Electron. Lett. 37(1), 20–21 (2000)

    Article  Google Scholar 

  10. D.M.A. Akber, H.M. Julius, O. Chae, Background independent moving object segmentation for video surveillance. Ieice Trans. Commun. 92(2), 585–598 (2009)

    Google Scholar 

  11. A.N. Taeki, M.H. Kim, Context-aware video surveillance system. J. Electr. Eng. Technol. 7(1), 115–123 (2012)

    Article  Google Scholar 

  12. A. Milosavljević, A. Dimitrijević, D. Rančić, GIS-augmented video surveillance. Int. J. Geogr. Inf. Sci. 24(9), 1415–1433 (2010)

    Article  Google Scholar 

  13. J.S. Kim, H.Y. Dong, Y.H. Joo, Fast and robust algorithm of tracking multiple moving objects for intelligent video surveillance systems. IEEE Trans. Consum. Electron. 57(3), 1165–1170 (2011)

    Article  Google Scholar 

  14. Z. Zhang, M. Wang, X. Geng, Crowd counting in public video surveillance by label distribution learning. Neurocomputing 166(1), 151–163 (2015)

    Article  Google Scholar 

  15. H. Yoon, Y. Jung, S. Lee, An image sequence transmission method in wireless video surveillance systems. Wireless Pers. Commun. 82(3), 1225–1238 (2015)

    Article  Google Scholar 

  16. W.F. Wang, X. Chen, G.W. Zhang, J. Qian, W. Peng, B.Q. Wu, H.W. Zheng, Precision security: integrating video surveillance with surrounding environment changes. Complexity, Article ID 2959030 (2018)

    Google Scholar 

  17. K.A. Niranjil, C. Sureshkumar, Background subtraction in dynamic environment based on modified adaptive GMM with TTD for moving object detection. J. Electr. Eng. Technol. 10(1), 372–378 (2015)

    Article  Google Scholar 

  18. Q. Yan, L. Li, Kernel sparse tracking with compressive sensing. IET Comput. Vision 8(4), 305–315 (2014)

    Article  Google Scholar 

  19. T. Kryjak, M. Komorkiewicz, M. Gorgon, Real-time implementation of foreground object detection from a moving camera using the vibe algorithm. Comput. Sci. Inf. Syst. 11(4), 1617–1637 (2014)

    Article  Google Scholar 

  20. J. Cao, S. Kwong, R. Wang, A noise-detection based adaboost algorithm for mislabeled data. Pattern Recogn. 45(12), 4451–4465 (2012)

    Article  MATH  Google Scholar 

  21. M. Kimura, M. Shibata, Environment recognition using optical flow in an autonomous mobile robot. Parkinsonism & Related Disorders 14(8), S63–S64 (2008)

    Google Scholar 

  22. A. Temko, C. Nadeu, Classification of acoustic events using svm-based clustering schemes. Pattern Recogn. 39(4), 682–694 (2006)

    Article  MATH  Google Scholar 

  23. S.M. Erfani, S. Rajasegarar, S. Karunasekera, C. Leckie, High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58(10), 121–134 (2016)

    Article  Google Scholar 

  24. K. Kang, X. Wang, Fully convolutional neural networks for crowd segmentation. Comput. Sci. 49(1), 25–30 (2014)

    Google Scholar 

  25. M. Xu, J. Lei, Y. Shen, Hierarchical tracking with deep learning. J. Comput. Inf. Syst. 10(15), 6331–6338 (2014)

    Google Scholar 

  26. J. Hu, J. Lu, Y.P. Tan, Deep metric learning for visual tracking. IEEE Trans. Circuits Syst. Video Technol. 26(11), 2056–2068 (2016)

    Article  Google Scholar 

  27. J. Kuen, K.M. Lim, C.P. Lee, Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle. Pattern Recogn. 48(10), 2964–2982 (2015)

    Article  Google Scholar 

  28. R. Steen, A portable digital video surveillance system to monitor prey deliveries at raptor nests. J. Raptor Res. 43(1), 69–74 (2017)

    Article  Google Scholar 

  29. B.G. Kim, Fast coding unit (CU) determination algorithm for high-efficiency video coding (HEVC) in smart surveillance application. J. Supercomputing 73(3), 1063–1084 (2017)

    Article  Google Scholar 

  30. L. Chen, D. Zhu, J. Tian, J. Liu, Dust particle detection in traffic surveillance video using motion singularity analysis. Digit. Signal Proc. 58(3), 127–133 (2016)

    Article  Google Scholar 

  31. S.A.A. Shah, M. Bennamoun, F. Boussaid, Iterative deep learning for image set based face and object recognition. Neurocomputing 174(1), 866–874 (2016)

    Article  Google Scholar 

  32. I. Lenz, H. Lee, A. Saxena, Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2013)

    Google Scholar 

  33. B. Kamsu-Foguem, D. Noyes, Graph-based reasoning in collaborative knowledge management for industrial maintenance. Comput. Ind. 64(8), 998–1013 (2013)

    Article  Google Scholar 

  34. A. Ess, K. Schindler, B. Leibe, L. Van Gool, Object detection and tracking for autonomous navigation in dynamic environments. Int. J. Robot. Res. 29(14), 1707–1725 (2010)

    Article  Google Scholar 

  35. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 779–788

    Google Scholar 

  36. J.H. Ruan, X.P. Wang, F.T.S. Chan, Y. Shi, Optimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clustering. Int. J. Prod. Res. 54(14), 4368–4386 (2016)

    Article  Google Scholar 

  37. J.H. Ruan, Y. Shi, Monitoring and assessing fruit freshness in IOT-based e-commerce delivery using scenario analysis and interval number approaches. Inf. Sci. 373(12), 557–570 (2016)

    Article  Google Scholar 

  38. Z.H. Lv, S.U. Rehman, M.S.L. Khan, H. Li, Anaglyph 3D Stereoscopic Visualization of 2D Video Based on Fundamental Matrix. International Conference on Virtual Reality and Visualization (2013) pp. 305–308

    Google Scholar 

  39. J.H. Ruan, X.P. Wang, Y. Shi, A two-stage approach for medical supplies intermodal transportation in large-scale disaster responses. Int. J. Environ. Res. Publ. Health 11(11), 11081–11109 (2014)

    Article  Google Scholar 

  40. H. Jiang, J.H. Ruan, Fuzzy evaluation on network security based on the new algorithm of membership degree transformation—m(1,2,3). J. Netw. 4(5), 324–331 (2009)

    Google Scholar 

  41. J.H. Ruan, P. Shi, C.C. Lim, X.P. Wang, Relief supplies allocation and optimization by interval and fuzzy number approaches. Inf. Sci. 303(3), 15–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Otjacques, F.D. Laender, P. Kestemont, Discerning the causes of a decline in a common european fish, the roach (rutilus rutilus, l.): a modelling approach. Ecol. Model. 322(2), 92–100 (2016)

    Article  Google Scholar 

  43. C.J. Littles, S.S. Pilyugin, T.K. Frazer, A combined inverse method and multivariate approach for exploring population trends of florida manatees. Marine Mammal Sci. 32(1), 122–140 (2016)

    Article  Google Scholar 

  44. S. Santoro, A.J. Green, J. Figuerola, Immigration enhances fast growth of a newly established source population. Ecology 97(4), 1048–1057 (2016)

    Google Scholar 

  45. J.D. Smith, C. Zhang, Generalized lotka stability. Theor. Popul. Biol. 103(8), 38–43 (2015)

    Article  MATH  Google Scholar 

  46. R. Velik, A brain-inspired multimodal data mining approach for human activity recognition in elderly homes. J. Ambient Intell. Smart Environ. 6(4), 447–468 (2014)

    Google Scholar 

  47. J.J. Wong, S.Y. Cho, A brain-inspired framework for emotion recognition. Magn. Reson. Imaging 32(9), 1139–1155 (2006)

    Google Scholar 

  48. N. Ovcharova, F. Gauterin, Assessment of an adaptive predictive collision warning system based on driver’s attention detection. Clin. Exp. Metas. 8(2), 215–224 (2012)

    Google Scholar 

  49. A. Finn, K. Rogers, Accuracy requirements for unmanned aerial vehicle-based acoustic atmospheric tomography. J. Acoust. Soc. Am. 139(4), 2097–2097 (2016)

    Article  Google Scholar 

  50. S. Kim, H. Oh, A. Tsourdos, Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. J. Guid. Control Dyn. 36(2), 557–566 (2013)

    Article  Google Scholar 

  51. Z. Zheng, Y. Liu, X. Zhang, The more obstacle information sharing, the more effective real-time path planning? Knowl. Based Syst. 114(12), 36–46 (2016)

    Article  Google Scholar 

  52. M.W. Whalen, D. Cofer, A. Gacek, Requirements and architectures for secure vehicles. IEEE Softw. 33(4), 22–25 (2016)

    Article  Google Scholar 

  53. R. Czyba, G. Szafrański, A. Ryś, Design and control of a single tilt tri-rotor aerial vehicle. J. Intell. Rob. Syst. 84(1-4), 53–66 (2016)

    Article  Google Scholar 

  54. X. Zhang, H. Duan, An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Appl. Soft Comput. 26(3), 270–284 (2015)

    Article  Google Scholar 

  55. T. Uppal, S. Raha, S. Srivastava, Trajectory feasibility evaluation using path prescribed control of unmanned aerial vehicle in differential algebraic equations framework. Aeronaut. J. New Ser. 121(1240), 1–20 (2017)

    Google Scholar 

  56. A.V. Savkin, W. Chao, A framework for safe assisted navigation of semi-autonomous vehicles among moving and steady obstacles. Robotica 35(5), 981–1005 (2016)

    Article  Google Scholar 

  57. Y.T. Tan, M. Chitre, F.S. Hover, Cooperative bathymetry-based localization using low-cost autonomous underwater vehicles. Auton. Robots 40(7), 1–19 (2015)

    Google Scholar 

  58. J.L. Crespo, A. Faiña, R.J. Duro, An adaptive detection/attention mechanism for real time robot operation. Neurocomputing 72(4–6), 850–860 (2009)

    Article  Google Scholar 

  59. W. Barbara, Computational intelligence: from natural to artificial systems. Connection Sci. 14(2), 163–164 (2002)

    Article  Google Scholar 

  60. E. Bonabeau, C. Meyer, Computational intelligence. A whole new way to think about business. Harvard Bus. Rev. 79(5), 106–114 (2001)

    Google Scholar 

  61. Y. Wang, D. Shen, E.K. Teoh, Lane detection using spline model. Pattern Recogn. Lett. 21(8), 677–689 (2000)

    Article  Google Scholar 

  62. Z.W. Kim, Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 9(1), 16–26 (2008)

    Article  Google Scholar 

  63. Q. Li, N. Zheng N, H. Cheng, Springrobot: a prototype autonomous vehicle and its algorithms for lane detection. IEEE Trans. Intell. Transp. Syst. 5(4), 300–308 (2004)

    Article  Google Scholar 

  64. M. Dorigo, M. Birattari, C. Blum, Ant Colony Optimization and Computational Intelligence, vol. 49, no. 8 (Springer, Berlin, 1995), pp. 767–771

    Google Scholar 

  65. S. Garnier, J. Gautrais, G. Theraulaz, The biological principles of computational intelligence. Comput. Intell. 1(1), 3–31 (2007)

    Google Scholar 

  66. H.P. Liu, D. Guo, F.C. Sun, Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans. Instrum. Meas. 65(3), 656–665 (2016)

    Article  Google Scholar 

  67. H.P. Liu, Y.L. Yu, F.C. Sun, J. Gu, Visual-tactile fusion for object recognition. IEEE Trans. Autom. Sci. Eng., 14(99), 1–13 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Deng, X., Ding, L., Zhang, L. (2020). Brain-Inspired Perception, Motion and Control. In: Brain-Inspired Intelligence and Visual Perception. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-3549-5_6

Download citation

Publish with us

Policies and ethics