Skip to main content

RNA-Mediated Crosstalk Between Bacterial Core Genome and Foreign Genetic Elements

  • Chapter
  • First Online:
DNA Traffic in the Environment
  • 719 Accesses

Abstract

Gene expression is regulated at both transcriptional and posttranscriptional levels. Foreign genetic elements have evolved to integrate their expression systems into the host regulatory network. Transcription of AT-rich foreign genes is globally silenced by chromosomal nucleoid proteins such as H-NS. Similarly, a global posttranscriptional regulator Hfq tends to bind AU-rich transcripts and plays an important role to optimize expression of foreign genes as well as its core genome. The RNA chaperone Hfq also facilitates base-pairing between RNA molecules in trans and thus contributes to the crosstalk between chromosomal and foreign genes. Moreover, other classes of RNA chaperones are also involved in the crosstalk. Taking the model pathogen Salmonella Typhimurium as an example, this chapter focuses on the RNA-mediated crosstalk between chromosome and foreign genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961;3:318–56.

    Article  CAS  PubMed  Google Scholar 

  2. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, et al. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev. 2010;34:883–923.

    Article  CAS  PubMed  Google Scholar 

  3. Mohanty BK, Kushner SR. Regulation of mRNA decay in bacteria. Annu Rev Microbiol. 2016;70:25–44.

    Article  CAS  PubMed  Google Scholar 

  4. Hui MP, Foley PL, Belasco JG. Messenger RNA degradation in bacterial cells. Annu Rev Genet. 2014;48:537–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shine J, Dalgarno L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974;71:1342–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P. Architecture of a transcribing-translating expressome. Science. 2017;356:194–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Lay N, Schu DJ, Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem. 2013;288:7996–8003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Frohlich KS, Vogel J. Activation of gene expression by small RNA. Curr Opin Microbiol. 2009;12:674–82.

    Article  PubMed  CAS  Google Scholar 

  9. Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev. 2015;39:362–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Repoila F, Darfeuille F. Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell. 2009;101:117–31.

    Article  CAS  PubMed  Google Scholar 

  11. Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol. 2007;10:102–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wagner EG, Altuvia S, Romby P. Antisense RNAs in bacteria and their genetic elements. Adv Genet. 2002;46:361–98.

    Article  CAS  PubMed  Google Scholar 

  13. Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. 2011;3:a003798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol. 2011;9:578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagner EG, Romby P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet. 2015;90:133–208.

    Article  PubMed  Google Scholar 

  16. Gimpel M, Brantl S. Dual-function small regulatory RNAs in bacteria. Mol Microbiol. 2017;103:387–97.

    Article  CAS  PubMed  Google Scholar 

  17. Vanderpool CK, Balasubramanian D, Lloyd CR. Dual-function RNA regulators in bacteria. Biochimie. 2011;93:1943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bouloc P, Repoila F. Fresh layers of RNA-mediated regulation in Gram-positive bacteria. Curr Opin Microbiol. 2016;30:30–5.

    Article  CAS  PubMed  Google Scholar 

  19. De Lay NR, Garsin DA. The unmasking of ‘junk’ RNA reveals novel sRNAs: from processed RNA fragments to marooned riboswitches. Curr Opin Microbiol. 2016;30:16–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Miyakoshi M, Chao Y, Vogel J. Regulatory small RNAs from the 3′ regions of bacterial mRNAs. Curr Opin Microbiol. 2015;24:132–9.

    Article  CAS  PubMed  Google Scholar 

  21. Tomizawa J, Itoh T, Selzer G, Som T. Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci U S A. 1981;78:1421–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weaver KE. Emerging plasmid-encoded antisense RNA regulated systems. Curr Opin Microbiol. 2007;10:110–6.

    Article  CAS  PubMed  Google Scholar 

  23. Saramago M, Barria C, Arraiano CM, Domingues S. Ribonucleases, antisense RNAs and the control of bacterial plasmids. Plasmid. 2015;78:26–36.

    Article  CAS  PubMed  Google Scholar 

  24. Smirnov A, Forstner KU, Holmqvist E, Otto A, Gunster R, Becher D, Reinhardt R, Vogel J. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci U S A. 2016;113:11591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brantl S, Jahn N. sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol Rev. 2015;39:413–27.

    Article  CAS  PubMed  Google Scholar 

  26. Gerdes K, Wagner EG. RNA antitoxins. Curr Opin Microbiol. 2007;10:117–24.

    Article  CAS  PubMed  Google Scholar 

  27. Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell. 2018;70(5):768–84.

    Article  CAS  PubMed  Google Scholar 

  28. Guo Y, Quiroga C, Chen Q, McAnulty MJ, Benedik MJ, Wood TK, Wang X. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res. 2014;42:6448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomizawa J, Som T. Control of ColE1 plasmid replication: enhancement of binding of RNA I to the primer transcript by the Rom protein. Cell. 1984;38:871–8.

    Article  CAS  PubMed  Google Scholar 

  30. Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–19.

    Article  CAS  PubMed  Google Scholar 

  31. Arutyunov D, Frost LS. F conjugation: back to the beginning. Plasmid. 2013;70:18–32.

    Article  CAS  PubMed  Google Scholar 

  32. Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev. 1994;58:162–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Penfold SS, Simon J, Frost LS. Regulation of the expression of the traM gene of the F sex factor of Escherichia coli. Mol Microbiol. 1996;20:549–58.

    Article  CAS  PubMed  Google Scholar 

  34. Finlay BB, Frost LS, Paranchych W, Willetts NS. Nucleotide sequences of five IncF plasmid finP alleles. J Bacteriol. 1986;167:754–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheah KC, Skurray R. The F plasmid carries an IS3 insertion within finO. J Gen Microbiol. 1986;132:3269–75.

    CAS  PubMed  Google Scholar 

  36. Yoshioka Y, Ohtsubo H, Ohtsubo E. Repressor gene finO in plasmids R100 and F: constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. J Bacteriol. 1987;169:619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jerome LJ, van Biesen T, Frost LS. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E. J Mol Biol. 1999;285:1457–73.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SH, Frost LS, Paranchych W. FinOP repression of the F plasmid involves extension of the half-life of FinP antisense RNA by FinO. Mol Gen Genet. 1992;235:131–9.

    Article  CAS  PubMed  Google Scholar 

  39. Koraimann G, Teferle K, Markolin G, Woger W, Hogenauer G. The FinOP repressor system of plasmid R1: analysis of the antisense RNA control of traJ expression and conjugative DNA transfer. Mol Microbiol. 1996;21:811–21.

    Article  CAS  PubMed  Google Scholar 

  40. van Biesen T, Frost LS. The FinO protein of IncF plasmids binds FinP antisense RNA and its target, traJ mRNA, and promotes duplex formation. Mol Microbiol. 1994;14:427–36.

    Article  PubMed  Google Scholar 

  41. van Biesen T, Soderbom F, Wagner EG, Frost LS. Structural and functional analyses of the FinP antisense RNA regulatory system of the F conjugative plasmid. Mol Microbiol. 1993;10:35–43.

    Article  PubMed  Google Scholar 

  42. Franze de Fernandez MT, Eoyang L, August JT. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature. 1968;219:588–90.

    Article  CAS  PubMed  Google Scholar 

  43. Schuppli D, Georgijevic J, Weber H. Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase. J Mol Biol. 2000;295:149–54.

    Article  CAS  PubMed  Google Scholar 

  44. Chao Y, Vogel J. The role of Hfq in bacterial pathogens. Curr Opin Microbiol. 2010;13:24–33.

    Article  CAS  PubMed  Google Scholar 

  45. Sobrero P, Valverde C. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol. 2012;38:276–99.

    Article  CAS  PubMed  Google Scholar 

  46. Otaka H, Ishikawa H, Morita T, Aiba H. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A. 2011;108:13059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sauer E, Weichenrieder O. Structural basis for RNA 3′-end recognition by Hfq. Proc Natl Acad Sci U S A. 2011;108:13065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Link TM, Valentin-Hansen P, Brennan RG. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A. 2009;106:19292–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol. 2004;11:1206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schumacher MA, Pearson RF, Moller T, Valentin-Hansen P, Brennan RG. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J. 2002;21:3546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sauer E, Schmidt S, Weichenrieder O. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc Natl Acad Sci U S A. 2012;109:9396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang A, Schu DJ, Tjaden BC, Storz G, Gottesman S. Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets. J Mol Biol. 2013;425:3678–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol. 2003;50:1111–24.

    Article  CAS  PubMed  Google Scholar 

  54. Bilusic I, Popitsch N, Rescheneder P, Schroeder R, Lybecker M. Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation. RNA Biol. 2014;11:641–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J. An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J. 2012;31:4005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 2008;4:e1000163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tree JJ, Granneman S, McAteer SP, Tollervey D, Gally DL. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell. 2014;55:199–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 2016;35:991–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gorski SA, Vogel J, Doudna JA. RNA-based recognition and targeting: sowing the seeds of specificity. Nat Rev Mol Cell Biol. 2017;18:215–28.

    Article  CAS  PubMed  Google Scholar 

  60. Morita T, Nishino R, Aiba H. Role of terminator hairpin in biogenesis of functional Hfq-binding sRNAs. RNA. 2017;23(9):1419–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morita T, Ueda M, Kubo K, Aiba H. Insights into transcription termination of Hfq-binding sRNAs of Escherichia coli and characterization of readthrough products. RNA. 2015;21:1490–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Updegrove TB, Zhang A, Storz G. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol. 2016;30:133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N, Bar A, Altuvia Y, Argaman L, Margalit H. Global mapping of small RNA-target interactions in bacteria. Mol Cell. 2016;63:884–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lalaouna D, Carrier MC, Semsey S, Brouard JS, Wang J, Wade JT, Masse E. A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol Cell. 2015;58:393–405.

    Article  CAS  PubMed  Google Scholar 

  65. Miyakoshi M, Chao Y, Vogel J. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J. 2015;34:1478–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vakulskas CA, Potts AH, Babitzke P, Ahmer BM, Romeo T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev. 2015;79:193–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I, Romeo T, Babitzke P. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol. 2013;87:851–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Figueroa-Bossi N, Schwartz A, Guillemardet B, D’Heygere F, Bossi L, Boudvillain M. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev. 2014;28:1239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu MY, Gui G, Wei B, Preston JF 3rd, Oakford L, Yuksel U, Giedroc DP, Romeo T. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem. 1997;272:17502–10.

    Article  CAS  PubMed  Google Scholar 

  70. Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, Baker CS, Georgellis D, Babitzke P, Romeo T. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol. 2003;48:657–70.

    Article  CAS  PubMed  Google Scholar 

  71. Potts AH, Vakulskas CA, Pannuri A, Yakhnin H, Babitzke P, Romeo T. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat Commun. 2017;8:1596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, Kearns DB. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol Microbiol. 2011;82:447–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dugar G, Svensson SL, Bischler T, Waldchen S, Reinhardt R, Sauer M, Sharma CM. The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat Commun. 2016;7:11667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mark Glover JN, Chaulk SG, Edwards RA, Arthur D, Lu J, Frost LS. The FinO family of bacterial RNA chaperones. Plasmid. 2015;78:79–87.

    Article  CAS  PubMed  Google Scholar 

  75. Olejniczak M, Storz G. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol. 2017;104:905–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Milner JL, Wood JM. Insertion proQ220::Tn5 alters regulation of proline porter II, a transporter of proline and glycine betaine in Escherichia coli. J Bacteriol. 1989;171:947–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stalmach ME, Grothe S, Wood JM. Two proline porters in Escherichia coli K-12. J Bacteriol. 1983;156:481–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kerr CH, Culham DE, Marom D, Wood JM. Salinity-dependent impacts of ProQ, Prc, and Spr deficiencies on Escherichia coli cell structure. J Bacteriol. 2014;196:1286–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Chaulk SG, Smith Frieday MN, Arthur DC, Culham DE, Edwards RA, Soo P, Frost LS, Keates RA, Glover JN, Wood JM. ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. Biochemistry. 2011;50:3095–106.

    Article  CAS  PubMed  Google Scholar 

  80. Sexton JA, Vogel JP. Regulation of hypercompetence in Legionella pneumophila. J Bacteriol. 2004;186:3814–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Attaiech L, Boughammoura A, Brochier-Armanet C, Allatif O, Peillard-Fiorente F, Edwards RA, Omar AR, MacMillan AM, Glover M, Charpentier X. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A. 2016;113:8813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smirnov A, Wang C, Drewry LL, Vogel J. Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J. 2017;36:1029–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Holmqvist E, Li L, Bischler T, Barquist L, Vogel J. Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3′ ends. Mol Cell. 2018;70:971–982 e976.

    Article  CAS  PubMed  Google Scholar 

  84. Chaulk S, Lu J, Tan K, Arthur DC, Edwards RA, Frost LS, Joachimiak A, Glover JN. N. meningitidis 1681 is a member of the FinO family of RNA chaperones. RNA Biol. 2010;7:812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ghetu AF, Gubbins MJ, Frost LS, Glover JN. Crystal structure of the bacterial conjugation repressor finO. Nat Struct Biol. 2000;7:565–9.

    Article  CAS  PubMed  Google Scholar 

  86. Gonzalez GM, Hardwick SW, Maslen SL, Skehel JM, Holmqvist E, Vogel J, Bateman A, Luisi BF, Broadhurst RW. Structure of the Escherichia coli ProQ RNA-binding protein. RNA. 2017;23:696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fabrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013;26:308–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect. 2000;2:145–56.

    Article  CAS  PubMed  Google Scholar 

  89. Porwollik S, McClelland M. Lateral gene transfer in Salmonella. Microbes Infect. 2003;5:977–89.

    Article  CAS  PubMed  Google Scholar 

  90. Kroger C, Colgan A, Srikumar S, Handler K, Sivasankaran SK, Hammarlof DL, Canals R, Grissom JE, Conway T, Hokamp K, et al. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe. 2013;14:683–95.

    Article  CAS  PubMed  Google Scholar 

  91. Srikumar S, Kroger C, Hebrard M, Colgan A, Owen SV, Sivasankaran SK, Cameron AD, Hokamp K, Hinton JC. RNA-seq brings new insights to the intra-macrophage transcriptome of Salmonella Typhimurium. PLoS Pathog. 2015;11:e1005262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol. 2007;10:24–9.

    Article  CAS  PubMed  Google Scholar 

  93. Fass E, Groisman EA. Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol. 2009;12:199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bustamante VH, Martinez LC, Santana FJ, Knodler LA, Steele-Mortimer O, Puente JL. HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc Natl Acad Sci U S A. 2008;105:14591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2006;2:e81.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science. 2006;313:236–8.

    Article  CAS  PubMed  Google Scholar 

  97. Dorman CJ. H-NS, the genome sentinel. Nat Rev Microbiol. 2007;5:157–61.

    Article  CAS  PubMed  Google Scholar 

  98. Azam MS, Vanderpool CK. Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism. Nucleic Acids Res. 2018;46:2585–99.

    Article  PubMed  CAS  Google Scholar 

  99. Chen J, Gottesman S. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev. 2017;31(13):1382–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Desnoyers G, Masse E. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev. 2012;26:726–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Prevost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Masse E. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol. 2007;64:1260–73.

    Article  CAS  PubMed  Google Scholar 

  102. Salvail H, Caron MP, Belanger J, Masse E. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO J. 2013;32:2764–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pfeiffer V, Sittka A, Tomer R, Tedin K, Brinkmann V, Vogel J. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol. 2007;66:1174–91.

    Article  CAS  PubMed  Google Scholar 

  104. Ipinza F, Collao B, Monsalva D, Bustamante VH, Luraschi R, Alegria-Arcos M, Almonacid DE, Aguayo D, Calderon IL, Gil F, et al. Participation of the Salmonella OmpD porin in the infection of RAW264.7 macrophages and BALB/c mice. PLoS One. 2014;9:e111062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Choi E, Han Y, Cho YJ, Nam D, Lee EJ. A trans-acting leader RNA from a Salmonella virulence gene. Proc Natl Acad Sci U S A. 2017;114:10232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, Altuvia S. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res. 2008;36:1913–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hershko-Shalev T, Odenheimer-Bergman A, Elgrably-Weiss M, Ben-Zvi T, Govindarajan S, Seri H, Papenfort K, Vogel J, Altuvia S. Gifsy-1 prophage IsrK with dual function as small and messenger RNA modulates vital bacterial machineries. PLoS Genet. 2016;12:e1005975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Calderon IL, Morales EH, Collao B, Calderon PF, Chahuan CA, Acuna LG, Gil F, Saavedra CP. Role of Salmonella Typhimurium small RNAs RyhB-1 and RyhB-2 in the oxidative stress response. Res Microbiol. 2014;165:30–40.

    Article  CAS  PubMed  Google Scholar 

  109. Calderon PF, Morales EH, Acuna LG, Fuentes DN, Gil F, Porwollik S, McClelland M, Saavedra CP, Calderon IL. The small RNA RyhB homologs from Salmonella typhimurium participate in the response to S-nitrosoglutathione-induced stress. Biochem Biophys Res Commun. 2014;450:641–5.

    Article  CAS  PubMed  Google Scholar 

  110. Kim JN, Kwon YM. Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella: RyhB-2 regulates motility phenotype. Microbiol Res. 2013;168:621–9.

    Article  CAS  PubMed  Google Scholar 

  111. Ortega AD, Gonzalo-Asensio J, Garcia-del Portillo F. Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. RNA Biol. 2012;9:469–88.

    Article  CAS  PubMed  Google Scholar 

  112. Gong H, Vu GP, Bai Y, Chan E, Wu R, Yang E, Liu F, Lu S. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog. 2011;7:e1002120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee YH, Kim S, Helmann JD, Kim BH, Park YK. RaoN, a small RNA encoded within Salmonella pathogenicity island-11, confers resistance to macrophage-induced stress. Microbiology. 2013;159:1366–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smith C, Stringer AM, Mao C, Palumbo MJ, Wade JT. Mapping the regulatory network for Salmonella enterica serovar Typhimurium invasion. MBio. 2016;7:e01024–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Colgan AM, Kroger C, Diard M, Hardt WD, Puente JL, Sivasankaran SK, Hokamp K, Hinton JC. The Impact of 18 ancestral and horizontally-acquired Regulatory proteins upon the transcriptome and sRNA landscape of Salmonella enterica serovar Typhimurium. PLoS Genet. 2016;12:e1006258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sharma CM, Darfeuille F, Plantinga TH, Vogel J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 2007;21:2804–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sharma CM, Papenfort K, Pernitzsch SR, Mollenkopf HJ, Hinton JC, Vogel J. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol. 2011;81:1144–65.

    Article  CAS  PubMed  Google Scholar 

  118. Westermann AJ, Forstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Muller L, Reinhardt R, Stadler PF, Vogel J. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature. 2016;529:496–501.

    Article  CAS  PubMed  Google Scholar 

  119. Martinez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol. 2011;80:1637–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lopez-Garrido J, Puerta-Fernandez E, Casadesus J. A eukaryotic-like 3′ untranslated region in Salmonella enterica hilD mRNA. Nucleic Acids Res. 2014;42:5894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. El Mouali Y, Gaviria-Cantin T, Sanchez-Romero MA, Gibert M, Westermann AJ, Vogel J, Balsalobre C. CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level. PLoS Genet. 2018;14:e1007401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Papenfort K, Podkaminski D, Hinton JC, Vogel J. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci U S A. 2012;109:E757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition. Nucleic Acids Res. 2015;43:6511–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ellis MJ, Trussler RS, Charles O, Haniford DB. A transposon-derived small RNA regulates gene expression in Salmonella Typhimurium. Nucleic Acids Res. 2017;45:5470–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gonzalo-Asensio J, Ortega AD, Rico-Perez G, Pucciarelli MG, Garcia-Del Portillo F. A novel antisense RNA from the Salmonella virulence plasmid pSLT expressed by non-growing bacteria inside eukaryotic cells. PLoS One. 2013;8:e77939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Serna A, Espinosa E, Camacho EM, Casadesus J. Regulation of bacterial conjugation in microaerobiosis by host-encoded functions ArcAB and sdhABCD. Genetics. 2010;184:947–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Camacho EM, Casadesus J. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol. 2002;44:1589–98.

    Article  CAS  PubMed  Google Scholar 

  128. Camacho EM, Casadesus J. Regulation of traJ transcription in the Salmonella virulence plasmid by strand-specific DNA adenine hemimethylation. Mol Microbiol. 2005;57:1700–18.

    Article  CAS  PubMed  Google Scholar 

  129. Camacho EM, Serna A, Casadesus J. Regulation of conjugal transfer by Lrp and Dam methylation in plasmid R100. Int Microbiol. 2005;8:279–85.

    CAS  PubMed  Google Scholar 

  130. Papenfort K, Espinosa E, Casadesus J, Vogel J. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc Natl Acad Sci U S A. 2015;112:E4772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sterzenbach T, Nguyen KT, Nuccio SP, Winter MG, Vakulskas CA, Clegg S, Romeo T, Baumler AJ. A novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium. EMBO J. 2013;32:2872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Frohlich KS, Papenfort K. Interplay of regulatory RNAs and mobile genetic elements in enteric pathogens. Mol Microbiol. 2016;101:701–13.

    Article  PubMed  CAS  Google Scholar 

  133. Papenfort K, Corcoran CP, Gupta SK, Miyakoshi M, Heidrich N, Chao Y, Fröhlich KS, Ziebuhr W, Böhm A, Vogel J. Regulatory mechanisms of special significance: role of small RNAs in virulence regulation. In: Regulation of bacterial virulence. Washington, DC: American Society of Microbiology; 2013. p. 493–527.

    Google Scholar 

  134. Doyle M, Fookes M, Ivens A, Mangan MW, Wain J, Dorman CJ. An H-NS-like stealth protein aids horizontal DNA transmission in bacteria. Science. 2007;315:251–2.

    Article  CAS  PubMed  Google Scholar 

  135. Vrentas C, Ghirlando R, Keefer A, Hu Z, Tomczak A, Gittis AG, Murthi A, Garboczi DN, Gottesman S, Leppla SH. Hfqs in Bacillus anthracis: Role of protein sequence variation in the structure and function of proteins in the Hfq family. Protein Sci. 2015;24:1808–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Keefer AB, Asare EK, Pomerantsev AP, Moayeri M, Martens C, Porcella SF, Gottesman S, Leppla SH, Vrentas CE. In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1. BMC Microbiol. 2017;17:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Abbott ZD, Flynn KJ, Byrne BG, Mukherjee S, Kearns DB, Swanson MS. csrT represents a new class of csrA-like regulatory genes associated with integrative conjugative elements of Legionella pneumophila. J Bacteriol. 2016;198:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cech GM, Pakula B, Kamrowska D, Wegrzyn G, Arluison V, Szalewska-Palasz A. Hfq protein deficiency in Escherichia coli affects ColE1-like but not lambda plasmid DNA replication. Plasmid. 2014;73:10–5.

    Article  CAS  PubMed  Google Scholar 

  139. Will WR, Frost LS. Hfq is a regulator of F-plasmid TraJ and TraM synthesis in Escherichia coli. J Bacteriol. 2006;188:124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Domingues S, Nielsen KM. Membrane vesicles and horizontal gene transfer in prokaryotes. Curr Opin Microbiol. 2017;38:16–21.

    Article  CAS  PubMed  Google Scholar 

  141. Blenkiron C, Simonov D, Muthukaruppan A, Tsai P, Dauros P, Green S, Hong J, Print CG, Swift S, Phillips AR. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One. 2016;11:e0160440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ghosal A, Upadhyaya BB, Fritz JV, Heintz-Buschart A, Desai MS, Yusuf D, Huang D, Baumuratov A, Wang K, Galas D, et al. The extracellular RNA complement of Escherichia coli. Microbiology. 2015;4(2):252–66.

    CAS  Google Scholar 

  143. Ho MH, Chen CH, Goodwin JS, Wang BY, Xie H. Functional advantages of Porphyromonas gingivalis vesicles. PLoS One. 2015;10:e0123448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Sjostrom AE, Sandblad L, Uhlin BE, Wai SN. Membrane vesicle-mediated release of bacterial RNA. Sci Rep. 2015;5:15329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarz DW, Demers EG, Dolben EL, Hammond JH, Hogan DA, et al. A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog. 2016;12:e1005672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to the memory of Dr. Jun-ichi Tomizawa who passed away on 26th Jan. 2017. MM is supported by Tomizawa Jun-ichi and Keiko Fund of Molecular Biology Society of Japan for Young Scientists and MEXT LEADER program. Research in Miyakoshi group is supported by JSPS KAKENHI Grant (JP15H06528 and JP16H06190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Miyakoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyakoshi, M. (2019). RNA-Mediated Crosstalk Between Bacterial Core Genome and Foreign Genetic Elements. In: Nishida, H., Oshima, T. (eds) DNA Traffic in the Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-3411-5_4

Download citation

Publish with us

Policies and ethics