Skip to main content

Advances in Solar Energy: Solar Cells and Their Applications

  • Chapter
  • First Online:
Advances in Solar Energy Research

Abstract

This chapter will focus on the recent advances on the traditional and modern solar cell technologies, notably, (a) silicon solar cells, (b) multi-junction solar cells, (c) perovskite solar cells, and (d) dye-sensitized solar cells. Research efforts focused on improvement of the stability and the efficiency of each type of cells will be mentioned. While the current industrial market is predominantly dominated by silicon solar cells, other photovoltaic cells (b–d) show immense promise to overtake the silicon PV market in near future. The most efficient silicon solar cell reported reaches an efficiency of over 26%. This efficiency was achieved by fabricating a cell with an interdigitated back contact, combining n-type and p-type amorphous silicon to collect both holes and electrons. The back contact is separated from the front contact by crystalline silicon, with the front contact covered by an amorphous silicon passivation layer and an antireflective coating. A close competitor of silicon solar cells, known as multi-junction solar cells, displays power conversion efficiency as high as 46% using a solar concentrator. However, due to difficulty in cell fabrication with elevated cost, application of this type of cell is mostly limited to extraterrestrial purposes. A low-cost alternative of multi-junction cell is a perovskite solar cell. The best efficient perovskite solar cell with a power conversion efficiency of 23.9% was achieved by using a complex semitransparent organic–inorganic perovskite material with a high bandgap absorber, Cs0.1(H2NCHNH2)0.9PbI2.865Br0.135 combined with a low bandgap absorber, c-Si, for the back contact. While the perovskite solar cells are promising candidates as low-cost substitute to silicon solar cells, stability remains an issue for the former. On the other hand, dye-sensitized solar cells are cost-effective and chemically stable, with a best reported efficiency of 13% using a panchromatic donor–π–acceptor-based designed SM315 as an organic sensitizer; power conversion efficiency of this type of cell is still to be improved to overtake the silicon PV market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht S, Saliba M, Baena JPC, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Korte JL, Schlatmann R, Nazeeruddin MK, Hagfeldt A, Grätzel M, Rech B (2016) Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ Sci 9(1):81–88

    Article  Google Scholar 

  • Attfield JP, Lightfoot P, Morris RE (2015) Perovskites. Dalton Trans 44(23):10541–10542

    Article  Google Scholar 

  • Bai Y, Cao YM, Zhang J, Wang M, Li RZ, Wang P, Zakeeruddin SM, Grätzel M (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat Mater 7(8):626–630

    Article  Google Scholar 

  • Bailie CD, Christoforo MG, Mailoa JP, Bowring AR, Unger EL, Nguyen WH, Burschka J, Pellet N, Lee JZ, Grätzel M, Noufi R, Buonassisi T, Salleo A, McGehee MD (2015) Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci 8(3):956–963

    Article  Google Scholar 

  • Battaglia C, Cuevas A, Wolf SD (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9(5):1552–1576

    Article  Google Scholar 

  • Beal RE, Slotcavage DJ, Leijtens T, Bowring AR, Belisle RA, Nguyen WH, Burkhard G, Hoke ET, McGehee MD (2016) Cesium Lead Halide Perovskites with improved stability for tandem solar cells. J Phys Chem Lett 7(5):746–751

    Article  Google Scholar 

  • Bedair SM, Lamorte MF, Hauser JR (1979) A two‐junction cascade solar‐cell structure. Appl Phys Lett 34(1):38–39

    Article  Google Scholar 

  • Bella F, Griffini G, Correa-Baena JP, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C (2016) Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309):203–206

    Article  Google Scholar 

  • Benick J, Richter A, Muller R, Hauser H, Feldmann F, Krenckel P, Riepe S, Schindler F, Schubert MC, Hermle M, Bett AW, Glunz SW (2017) High-efficiency n-Type HP mc silicon solar cells. IEEE J Photovoltaics 7(5):1171–1175

    Article  Google Scholar 

  • Bergeron B, Marton A, Oskam G, Meyer G (2004) Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators. J Phys Chem B 109(2):937–943

    Article  Google Scholar 

  • Bertness KA, Kurtz SR, Friedman DJ, Kibbler AE, Kramer C, Olson JM (1994) 29.5%‐efficient GaInP/GaAs tandem solar cells. Appl Phys Lett 65(8):989–991

    Article  Google Scholar 

  • Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131(16):5930–5934

    Article  Google Scholar 

  • Bessho T, Zakeeruddin SM, Yeh CY, Diau EWG, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins. Angew Chem Int Ed 49(37):6646–6649

    Article  Google Scholar 

  • Blakers AW, Green MA (1986) 20% efficiency silicon solar cells. Appl Phys Lett 48(3):215–217

    Article  Google Scholar 

  • Blakers AW, Wang A, Milne AM, Zhao J, Green MA (1989) 22.8% efficient silicon solar cell. Appl Phys Lett 55(13):1363–1365

    Article  Google Scholar 

  • Blakers A, Zin N, McIntosh KR, Fong K (2013) High efficiency silicon solar cells. Energy Proc 33:1–10

    Article  Google Scholar 

  • Bonnet-Eymard M, Boccard M, Bugnon G, Meillaud F, Despeisse M, Haug FJ, Ballif C (2013) Current matching optimization in high-efficiency thin-film silicon tandem solar cells. In: 39th Photovoltaic Specialists Conference (PVSC). IEEE, Tampa, pp 0184–0187

    Google Scholar 

  • BP Global Homepage. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html. Last accessed 28 June 2018

  • Bruton TM (2002) General trends about photovoltaics based on crystalline silicon. Sol Energy Mater Sol Cells 72(1–4):3–10

    Article  Google Scholar 

  • Bush KA, Palmstrom AF, Yu Z, Boccard M, Cheacharoen R, Mailoa JP, McMeekin DP, Hoye RLZ, Bailie CD, Leijtens T, Peters IM, Minichetti MC, Rolston N, Prasanna R, Sofia SE, Harwood D, Ma W, Moghadam F, Snaith HJ, Buonassisi T, Holman ZC, Bent SF, McGehee MD (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2, article number 17009

    Google Scholar 

  • Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, Schmidt-Mende L, Nazeeruddin MK, Wang Q, Grätzel M, Officer DL (2007) Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J Phys Chem C 111(32):11760–11762

    Article  Google Scholar 

  • Cao Y, Bai Y, Yu Q, Cheng Y, Liu S, Shi D, Gao F, Wang P (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113(15):6290–6297

    Article  Google Scholar 

  • Cao Y, Saygili Y, Ummadisingu A, Teuscher J, Luo J, Pellet N, Giordano F, Zakeeruddin SM, Moser J-E, Freitag M, Hagfeldt A, Grätzel M (2017) 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nat Commun 8, article number 15390

    Article  Google Scholar 

  • Carlson DE, Wronski CR (1976) Amorphous silicon solar cell. Appl Phys Lett 28(11):671–673

    Article  Google Scholar 

  • Carlson S, Larsson AK, Rohrer FE (2000) High-pressure transformations of NbO2F. Acta Cryst B56:189–196

    Article  Google Scholar 

  • Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677

    Article  Google Scholar 

  • Chen C-Y, Wu S-J, Wu C-G, Chen J-G, Ho K-C (2006) A Ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45(35):5822–5825

    Article  Google Scholar 

  • Chen C-Y, Wu S-J, Li J-Y, Wu C-G, Chen J-G, Ho K-C (2007a) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 19(22):3888–3891

    Article  Google Scholar 

  • Chen C-Y, Lu H-C, Wu C-G, Chen J-G, Ho K-C (2007b) New Ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells. Adv Func Mater 17(1):29–36

    Article  Google Scholar 

  • Chen C-Y, Pootrakulchote N, Chen M-Y, Moehl T, Tsai H-H, Zakeeruddin SM, Wu C-G, Grätzel M (2012) A new heteroleptic ruthenium sensitizer for transparent dye-sensitized solar cells. Adv Energy Mater 2(12):1503–1509

    Article  Google Scholar 

  • Chen X, Xu D, Qiu L, Li S, Zhang W, Yan F (2013) Imidazolium functionalized TEMPO/iodide hybrid redox couple for highly efficient dye-sensitized solar cells. J Mater Chem A 1(31):8759–8765

    Article  Google Scholar 

  • Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z, Huang J (2016) Efficient semitransparent Perovskite solar cells for 23.0%‐efficiency Perovskite/Silicon four‐terminal tandem cells. Adv Energy Mater 6(19), article number 1601128

    Article  Google Scholar 

  • Cheng Z, Lin J (2010) Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12(10):2646–2662

    Article  Google Scholar 

  • Cheng YY, Fückel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW (2012) Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ Sci 5:6953–6959

    Article  Google Scholar 

  • Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45(2):24–28

    Article  Google Scholar 

  • Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012a) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399):486–489

    Article  Google Scholar 

  • Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012b) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399):486–489

    Article  Google Scholar 

  • Cid JJ, Garcia-Iglesias M, Yum JH, Forneli A, Albero J, Martinez-Ferrero E, Vazquez P, Grätzel M, Nazeeruddin MK, Palomares E, Torres T (2009) Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Chem Eur J 15(20):5130–5137

    Article  Google Scholar 

  • Clearfield A (1963) The synthesis and crystal structures of some alkaline earth titanium and zirconium sulphides. Acta Cryst 16:135–142

    Article  Google Scholar 

  • Clifford JN, Martίnez-Ferrero E, Viterisi A, Palomares E (2011) Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem Soc Rev 40(3):1635–1646

    Article  Google Scholar 

  • CleanTechnica. https://cleantechnica.com/2018/02/11/solar-panel-prices-continue-falling-quicker-expected-cleantechnica-exclusive. Last accessed 28 May 2018

  • Connolly JP, Mencaraglia D, Renard C, Bouchier D (2013) Designing III-V multijunction solar cells on silicon. In: 28th European photovoltaic solar energy conference and exhibition. EEA, Villepinte, pp 219–228

    Google Scholar 

  • Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Herbert P, Yoon H, Karam N (2009) III–V multijunction solar cells for concentrating photovoltaics. Energy Environ Sci 2:174–192

    Article  Google Scholar 

  • Daeneke T, Kwon T, Holmes A, Duffy N, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3(3):211–215

    Article  Google Scholar 

  • Dimroth F, Tibbits TND, Niemeyer M, Predan F, Beutal P, Karcher C, Oliva E, Siefer G, Lackner D, Fuß-Kailuweit P, Bett AW, Krause R, Drazek C, Guiot E, Wasselin J, Tauzin A, Signamarcheix T (2016) Four-junction wafer-bonded concentrator solar cells. IEEE J Photovolatics 6(1):343–349

    Article  Google Scholar 

  • Duong T, Wu Y, Shen H, Peng J, Fu X, Jacobs D, Wang E, Kho TC, Fong KC, Stocks M, Franklin E, Blakers A, Zin N, McIntosh K, Li W, Cheng Y, White TP, Weber K, Catchpole K (2017) Rubidium multication Perovskite with optimized bandgap for Perovskite‐Silicon tandem with over 26% efficiency. Adv Energy Mater 7(14), article number 1700228

    Article  Google Scholar 

  • Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014a) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7:982–988

    Article  Google Scholar 

  • Eperon GE, Burlakov VM, Docampo P, Goriely A, Snaith HJ (2014b) Morphological control for high performance, solution-processed planar heterojunction Perovskite solar cells. Adv Funct Mater 24(1):151–157

    Article  Google Scholar 

  • Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Wang JTW, McMeekin DP, Volonakis G, Milot RL, May R, Palmstrom A, Slotcavage DJ, Belisle R, Patel JB, Parrott ES, Sutton RJ, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H-G, Bent S, Giustino F, Herz LM, Johnston MB, McGehee MD, Snaith HJ (2016) Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314):861–865

    Article  Google Scholar 

  • European Union Homepage. https://europa.eu/european-union/topics/climate-action_en. Last accessed 28 June 2018

  • Feng S-W, Lai C-M, Tsai C-Y, Tu L-W (2014) Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells. Nanoscale Res Lett 9:652–661

    Article  Google Scholar 

  • Forgács D, Gil-Escrig L, Pérez-Del-Rey D, Momblona C, Werner J, Niesen B, Ballif C, Sessolo M, Bolink HJ (2017) Efficient monolithic Perovskite/Perovskite tandem solar cells. Adv Energy Mater 7(8), article number 1602121

    Article  Google Scholar 

  • Fraunhofer ISE. https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html. Last accessed 30 May 2018

  • Fraunhofer ISE. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/cpv-report-ise-nrel.pdf. Last accessed 29 May 2018

  • Freitas J, Nogueira A, De Paoli M (2009) New insights into dye-sensitized solar cells with polymer electrolytes. J Mater Chem 19(30):5279–5294

    Article  Google Scholar 

  • Friedman DJ (2010) Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr Opin Solid State Mater Sci 14(6):131–138

    Article  Google Scholar 

  • Galoppini E, Rochford J, Chen HH, Saraf G, Lu YC, Hagfeldt A, Boschloo G (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110(33):16159–16161

    Article  Google Scholar 

  • Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728

    Article  Google Scholar 

  • Garcia I, France RM, Geisz JF, McMahon WE, Steiner MA, Johnston S, Friedman DJ (2016) Metamorphic III–V solar cells: recent progress and potential. IEEE J Photovoltaics 6(1):366–373

    Article  Google Scholar 

  • Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10(3):1082–1087

    Article  Google Scholar 

  • Geisz JF, Friedman DJ, Ward JS, Duda A, Olavarria WJ, Moriarty TE, Kiehl JT, Romero MJ, Norman AG, Jones KM (2008) 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl Phys Lett 93(12):123505–123507

    Article  Google Scholar 

  • Gingl F, Vogt T, Akiba E, Yvon K (1999) Cubic CsCaH3 and hexagonal RbMgH3: new examples of fluoride-related perovskite-type hydrides. J Alloys Compd 282(1–2):125–129

    Article  Google Scholar 

  • Glunz SW (2006) New concepts for high-efficiency silicon solar cells. Sol Energy Mater Sol Cells 90(18–19):3276–3284

    Article  Google Scholar 

  • Goetzburger A, Luther J, Willeke G (2002) Solar cells: past, present, future. Sol Energy Mater Sol Cells 74:1–11

    Article  Google Scholar 

  • Grancini G, Roldán-Carmona C, Zimmerman I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Gräetzel M, Nazeeruddin MK (2017) Nat Commun 8, article number 15684

    Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  • Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798

    Article  Google Scholar 

  • Green MA (1993) Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. Semicond Sci Technol 8(1):1–12

    Article  Google Scholar 

  • Green MA (2000) Photovoltaics: technology overview. Energy Policy 28(14):989–998

    Article  Google Scholar 

  • Green M (2005) A: silicon photovoltaic modules: a brief history of the first 50 years. Prog Photovolt Res Appl 13(5):447–455

    Article  MathSciNet  Google Scholar 

  • Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17(3):183–189

    Article  Google Scholar 

  • Green MA, Blakers AW, Osterwald CR (1985) Characterization of high-efficiency silicon solar cells. J Appl Phys 58(11):4402–4408

    Article  Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables (version 40). Prog Photovolt Res Appl 20(5):606–614

    Article  Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W, Dunlop E (2014) Solar cell efficiency tables (version 43). Prog Photovolts Res Appl 22(1):1–11

    Article  Google Scholar 

  • Green MA, Keevers MJ, Thomas I, Lasich JB, Emery K, King RR (2015) Solar cell efficiency tables (version 47). Prog Photovolt Res Appl 23(6):685–691

    Article  Google Scholar 

  • Guter W, Kern R, Köstler W, Kubera T, Löckenoff R, Meusel M, Shirnow M, Strobl G (2011) III‐V multijunction solar cells–new lattice‐matched products and development of upright metamorphic 3 J cells. In: 7th international conference on concentrating photovoltaic systems. AIP, Las Vegas, pp 5–8

    Google Scholar 

  • Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in Perovskite solar cells. Nano Lett 14(10):5561–5568

    Article  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  Google Scholar 

  • Han H, Liu W, Zhang J, Zhao X (2005) A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Adv Funct Mater 15(12):1940–1944

    Article  Google Scholar 

  • Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics 8:489–494

    Article  Google Scholar 

  • Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem Commun 0(6):569–570

    Google Scholar 

  • Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003a) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27(5):783–785

    Article  Google Scholar 

  • Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003b) Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107(2):597–606

    Article  Google Scholar 

  • Hara K, Sato T, Katoh R, Furube A, Yoshihara T, Murai M, Kurashige M, Ito S, Shinpo A, Suga S, Arakawa H (2005) Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv Funct Mater 15(2):246–252

    Article  Google Scholar 

  • Henry CH (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51(8):4494–4500

    Article  Google Scholar 

  • Horiuchi T, Miura H, Uchida S (2003) Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem Commun 0(24):3036–3037

    Google Scholar 

  • Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126(39):12218–12219

    Article  Google Scholar 

  • Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093

    Article  Google Scholar 

  • International Energy Agency. Chapter 15 - Energy for cooking in developing countries, pp 419–445. http://www.iea.org/publications/freepublications/publication/cooking.pdf. Last accessed 28 June 2018

  • International Energy Agency Light’s Labour’s Lost. http://www.iea.org. Last accessed 28 June 2018

  • Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Pechy P, Takata M, Miura H, Uchida S, Grätzel M (2006) High-efficiency organic-dye- sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18(9):1202–1205

    Article  Google Scholar 

  • Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Péchyb P, Grätzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 0(41):5194–5196

    Google Scholar 

  • Jacoby M (2016) The future of low-cost solar cells. Chem Eng News 94(18):30–35

    Article  Google Scholar 

  • Jaysankar M, Filipič M, Zielinski B, Schmager R, Song W, Qiu W, Paetzold UW, Aernouts T, Debucquoy M, Gehlhaara R, Poortmans J (2018) Energy Environ Sci 11(6):1489–1498

    Article  Google Scholar 

  • Jiang Y, Shen H, Pu T, Zheng C, Tang Q, Gao K, Wu J, Rui C, Li Y, Liu Y (2017) High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure. Sol Energy 142:91–96

    Article  Google Scholar 

  • Kavan L, Yum J-H, Grätzel M (2011) Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett 11(12):5501–5506

    Article  Google Scholar 

  • King RR, Law DC, Edmondson KM, Fetzer CM, Kinsey GS, Yoon H, Sherif RA, Karam NH (2007) 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Appl Phys Lett 90(18):183516–183518

    Article  Google Scholar 

  • King RR, Bhusari D, Larrabee D, Liu XQ, Rehder E, Edmonson K, Cotal H, Jones RK, Ermer JH, Fetzer CM, Law DC, Karam NH (2012) Solar cell generations over 40% efficiency. Prog Photovolt Res Appl 20(6):801–815

    Article  Google Scholar 

  • Kingsbury EF, Ohl RS (1952) Photoelectric properties of ionically bombarded silicon. Bell Syst Tech J 31(4):802–815

    Article  Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal Halide Perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  Google Scholar 

  • Kulbak M, Cahen D, Hodes G (2015) How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr 3 cells. J Phys Chem Lett 6(13):2452–2456

    Article  Google Scholar 

  • Lal NN, White TP, Catchpole KR (2014) Optics and light trapping for tandem solar cells on silicon. IEEE J Photovoltaics 4(6):1380–1386

    Article  Google Scholar 

  • Lan Z, Wu J, Wang D, Hao S, Lin J, Huang Y (2007) Quasi-solid-state dye-sensitized solar cells based on a sol–gel organic–inorganic composite electrolyte containing an organic iodide salt. Sol Energy 81(1):117–122

    Article  Google Scholar 

  • Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured Organometal Halide Perovskites. Science 338(6107):643–647

    Article  Google Scholar 

  • Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ (2015) Stability of metal Halide Perovskite solar cells. Adv Energy Mater 5(20), article number 1500963

    Article  Google Scholar 

  • Liao X, Xiang X, Zeng X (2013) International conference on Electro-Information Technology (EIT). IEEE, Rapid City, USA

    Google Scholar 

  • Lin XX, Zeng Y, Zhong SH, Huang ZG, Qian HQ, Ling J, Zhu JB, Shen WZ (2015) Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production. Nanotechnology 26(12):125401–125410

    Article  Google Scholar 

  • Lincot D (2017) The new paradigm of photovoltaics: From powering satellites to powering humanity. C R Phys 18(7–8):381–390

    Article  Google Scholar 

  • Liu Y, Jennings JR, Huang Y, Wang Q, Zakeeruddin SM, Grätzel M (2011) Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-ir transmittance study. J Phys Chem C 115(38):18847–18855

    Article  Google Scholar 

  • Luaña V, Costales A, Pendás AM (1997) Ions in catalysis: the topology of the electron density in ionic materials II. The cubic halide perovskites. Phys Rev B 55:4285–4297

    Google Scholar 

  • Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Cryst B57:725–738

    Article  Google Scholar 

  • Lӧper P, Moon S, Nicolas SMD, Niesen B, Ledinsky M, Nicolay S, Bailat J, Yum J, Wolf SD, Ballif C (2015) Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys Chem Chem Phys 17(3):1619–1629

    Article  Google Scholar 

  • Mailoa JP, Bailie CD, Johlin EC, Hoke ET, Akey AJ, Nguyen WH, McGehee MD, Buonassisi T (2015) A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett 106(12), article number 121105

    Article  Google Scholar 

  • Mandelkorn J, McAfee C, Kesperis J, Schwartz L, Pharo W (1962) Fabrication and characteristics of phosphorous-diffused silicon solar cells. J Electrochem Soc 109(4):313–318

    Article  Google Scholar 

  • Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247

    Article  Google Scholar 

  • Matsui T, Sai H, Suezaki T, Matsumoto M, Saito K, Yoshida I, Kondo M (2013) Development of highly stable and efficient amorphous silicon based solar cells. In: 28th European photovoltaic solar energy conference and exhibition. EU PVSEC, Paris, pp 2213–2217

    Google Scholar 

  • Meier J, Spitznagel J, Kroll U, Bucher C, Fay S, Moriarty T, Shah A (2004) Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films 451–452:518–524

    Article  Google Scholar 

  • Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C (2006) Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells 90(18–19):2952–2959

    Article  Google Scholar 

  • Mishra A, Fischer MKR, Bauerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499

    Article  Google Scholar 

  • Mor GK, Kim S, Paulose M, Varghese OK, Shankar K, Basham J, Grimes CA (2009) Visible to near-infrared light harvesting in TiO2 nanotube array − P3HT based heterojunction solar cells. Nano Lett 9(12):4250–4257

    Article  Google Scholar 

  • Nazeeruddin MK, Kay A, Rodicio I, Humpbry-Baker R, Miiller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390

    Article  Google Scholar 

  • Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer CH, Grätzel M (1999) Acid − base equilibria of (2,2′-Bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg Chem 38(26):6298–6305

    Article  Google Scholar 

  • Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624

    Article  Google Scholar 

  • Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y (2014) Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A 2(3):705–710

    Article  Google Scholar 

  • Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herza LM, Snaith HJ (2014) Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7(9):3061–3068

    Article  Google Scholar 

  • NREL. https://www.nrel.gov/news/press/2014/15436.html. Last accessed 25 May 2018

  • NREL. https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Last accessed 26 May 2018

  • Nusbaumer H, Moser J, Zakeeruddin S, Nazeeruddin M, Grätzel M (2001) CoII(dbbip) 2+2 complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J Phys Chem B 105(43):10461–10464

    Article  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  • Ohl R (1942) Light-sensitive electric device including silicon. US Patent 2402662

    Google Scholar 

  • Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898

    Article  Google Scholar 

  • Oskam G, Bergeron B, Meyer G, Searson P (2001) Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J Phys Chem B 105(29):6867–6873

    Article  Google Scholar 

  • Panasonic https://news.panasonic.com/global/press/data/2014/04/en140410-4/en140410-4.html#top. Last accessed 28 May 2018

  • Panasonic. https://eu-solar.panasonic.net/en/2337.htm. Last accessed 28 May 2018

  • Paquette B, Boucherif A, Aimez V, Arès R (2016) Novel multijunction solar cell design for low cost, high concentration systems. Prog Photovolt Res Appl 24(2):150–158

    Article  Google Scholar 

  • Pazos-Outón LM, Szumilo M, Lamboll R, Richter JM, Crespo-quesada M, Abdi-Jalebi M, Beeson HJ, Vrucinic M, Alsari M, Snaith HJ, Ehrler B, Friend RH, Deschler F (2016) Photon recycling in lead iodide perovskite solar cells. Science 351(6280):1430–1433

    Article  Google Scholar 

  • Phillips SP, Dimroth F, Bett AW (2012) High efficiency III–V multijunction solar cells. In: McEvoy A, Castaner L, Markvart T (eds) Solar cells—materials, manufacture and operation, 2nd edn, ch. 1C-6. Elsevier, Amsterdam, pp 353–381

    Google Scholar 

  • Polander LE, Yella A, Teuscher J, Humphry-Baker R, Curchod BFE, Astani NA, Gao P, Moser J-E, Tavernelli I, Rothlisberger U, Grätzel M, Nazeeruddin MK, Frey J (2013) Unravelling the potential for dithienopyrrole sensitizers in dye-sensitized solar cells. Chem Mater 25(13):2642–2648

    Article  Google Scholar 

  • Razza S, Castro-Hermosa S, Carlo AD, Brown TM (2016) Large-area deposition, coating, printing, and processing, techniques for the upscaling of perovskite solar cell technology. APL Mater 4(9), article number 091508

    Google Scholar 

  • Rech B, Wagner H (1999) Potential of amorphous silicon for solar cells. Appl Phys A 69(2):155–167

    Article  Google Scholar 

  • Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovolt Res Appl 16(3):235–239

    Article  Google Scholar 

  • Rittner ES, Arndt RA (1976) Comparison of silicon solar cell efficiency for space and terrestrial use. J Appl Phys 47(7):2999–3002

    Article  Google Scholar 

  • Robson KCD, Koivisto BD, Yella A, Sporinova B, Nazeeruddin MK, Baumgartner T, Grätzel M, Berlinguette CP (2011) Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem 50(12):5494–5508

    Article  Google Scholar 

  • Rose RD, Magnone P, Zanuccoli M, Sangiorgi E, Fiegna C (2013) Loss analysis of silicon solar cells by means of numerical device simulation. In: 14th international conference on ultimate integration on silicon. IEEE, Coventry, UK, pp 205–208

    Google Scholar 

  • Sago T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. Asia Mater 2(3):96–102

    Article  Google Scholar 

  • Saidaminov MI, Abdelhady AL, Murali B, Alarousu E, Burlakov VM, Peng W, Dursun I, Wang L, He Y, MacUlan G, Goriely A, Wu T, Mohammed OF, Bakr OM (2015) High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun 6, article number 7586

    Google Scholar 

  • Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuku R, Takamoto T (2013) Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. In: 9th international conference on concentrator photovoltaic systems. AIP, Japan, pp 22–25

    Google Scholar 

  • Schmieder EK, Haughn C, Pulwin Z, Dyer D, Mutitu J, Doty M, Ebert C, Barnett A (2011) Analysis of high growth rate MOCVD structures by solar cell device measurements. In: 37th Photovoltaic Specialists Conference (PVSC). IEEE, Seattle, pp 000542–000545

    Google Scholar 

  • Schultz O, Glunz SW, Willeke GP (2004) Multicrystalline silicon solar cells exceeding 20% efficiency. Prog Photovolt Res Appl 12(7):553–558

    Article  Google Scholar 

  • Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  Google Scholar 

  • Smith DD, Cousins P, Westerberg S, Jesus-Tabajonda RD, Aniero G, Shen Y (2014) Toward the practical limits of silicon solar cells. IEEE J Photovoltaics 4(6):1465–1469

    Article  Google Scholar 

  • Snaith HJ, Moule AJ, Klein C, Meerholz K, Friend RH, Grätzel M (2007) efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett 7(11):3372–3376

    Article  Google Scholar 

  • Solar Energy For Us. https://solarenergyforus.com/amorphous-silicon-thin-film. Last accessed 03 June 2018

  • Solar Energy For Us. https://solarenergyforus.com/monocrystalline-silicon-solar-panel. Last accessed 03 June 2018

  • Solar Energy For Us. https://solarenergyforus.com/multijunction-solar-panel. Last accessed 03 June 2018

  • Solar Energy For Us. https://solarenergyforus.com/polycrystalline-silicon-solar-panel. Last accessed 03 June 2018

  • Steiner MA, Geisz JF, García I, Friedman DJ, Kurtz SR (2013) Experimental and modeling analysis of internal luminescence in III–V solar cells. In: 9th international conference on concentrator photovoltaic systems. AIP, Miyazaki, pp 57–61

    Google Scholar 

  • Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P (2002) Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett 2(11):1259–1261

    Article  Google Scholar 

  • Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(3156):341–343

    Article  Google Scholar 

  • Szlufcik J, Sivothaman S, Nijs JF, Mertens RP, Overstraeten RV (1997) Low-cost industrial technologies of crystalline silicon solar cells. Proc IEEE 85(5):711–730

    Article  Google Scholar 

  • Takamoto T, Ikeda E, Kurita H, Ohmori M (1997) Over 30% efficient InGaP/GaAs tandem solar cells. Appl Phys Lett 70(3):381–383

    Article  Google Scholar 

  • Takamoto T, Agui T, Ikeda E, Kurita H (2000) High-efficiency InGaP/InGaAs tandem solar cells on Ge substrates. In: 28th IEEE photovoltaic specialists conference. IEEE, Anchorage, USA, pp 976–981

    Google Scholar 

  • Tawada Y, Tsuge K, Kondo M, Okamoto H, Hamakawa Y (1982) Properties and structure of a-SiC: H for high-efficiency a-Si solar cell. J Appl Phys 53(7):5273–5281

    Article  Google Scholar 

  • Tennakone K, Kumara G, Kumarasinghe A, Wijayantha K, Sirimanne PM (1995) A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond Sci Technol 10(12):1689–1693

    Article  Google Scholar 

  • Tennakone K, Kumara G, Kottegoda I, Wijayantha K, Perrera V (1998) A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex. J Phys D Appl Phys 31(12):1492–1496

    Article  Google Scholar 

  • Tress W (2017) Perovskite solar cells on the way to their radiative efficiency limit—insights into a success story of high open‐circuit voltage and low recombination. Adv Energy Mater 7(14), article number 1602358

    Article  Google Scholar 

  • Unger EL, Kegelmann L, Suchan K, Sörell D, Korte L, Albrecht S (2017) Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A 5(23):11401–11409

    Article  Google Scholar 

  • Verlinden P, Deng W, Zhang X, Yang Y, Xu J, Shu Y, Quan P, Sheng J, Zhang S, Bao J, Ping F, Zhang Y, Feng Z (2014) The 6th world conference on photovoltaic energy conversion, WCPEC-6, Kyoto

    Google Scholar 

  • Vossier A, Chemisana D, Flamant G, Dollet A (2012) Very high fluxes for concentrating photovoltaics: considerations from simple experiments and modelling. Renew Energy 38(1):31–39

    Article  Google Scholar 

  • Wakisaka K, Sayama K, Tanaka M, Isomura M, Haku H, Kiyma S, Tsuda S (1997) Development of high-efficiency a-Si solar cell submodule with a size of 30 cm × 40 cm. Sol Energy Mat Sol Cells 49(1–4):121–125

    Article  Google Scholar 

  • Wang A, Zhao J, Green MA (1990) 24% efficient silicon solar cells. Appl Phys Lett 57:602–604

    Article  Google Scholar 

  • Wang P, Klein C, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2005) Stable ≥ 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility. Appl Phys Lett 86(12):article number 123508

    Article  Google Scholar 

  • Warmann EC, Leite MS, Atwater HA (2011) Photovoltaic efficiencies in lattice-matched III-V multijunction solar cells with unconventional lattice parameters. In: 37th Photovoltaic Specialists Conference (PVSC). IEEE, Seattle, pp 000570–000574

    Google Scholar 

  • Wells HL (1893) Uber die Caesium- und Kalium-Bleihalogenide. Zeitschrift für Anorg. Chemie 3(1):195–210

    Article  Google Scholar 

  • Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248(21–24):2459–2477

    Article  Google Scholar 

  • Werner J, Weng C-H, Walter A, Fesquet L, Seif JP, De Wolf S, Niesen B, Ballif C (2016) Efficient monolithic Perovskite/Silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett 7(1):161–166

    Article  Google Scholar 

  • Werner J, Niesen B, Ballif C (2018) Perovskite/silicon tandem solar cells: marriage of convenience or true love story?—an overview. Adv Mater Interfaces 5(1), article number 1700731

    Article  Google Scholar 

  • Wheeldon JF, Valdivia CE, Masson D, Proulx F, Riel B, Puetz N, Desfonds E, Farard S, Rioux B, SpringThorpe AJ, Arès R, Aimez V, Armstrong M, Swinton M, Cook J, Shepherd F, Hall TJ, Hinzer K (2010) High-efficiency commercial grade 1 cm2 AlGaInP/GaAs/Ge solar cells with embedded InAs quantum dots for concentrator demonstration system. In: Photonics North. SPIE, Niagara Falls, Canada, pp 77502Q-(1-9)

    Google Scholar 

  • Wolf M (1960) Limitations and possibilities for improvement of photovoltaic solar energy converters: Part I: considerations for earth’s surface operation. Proc IRE 48(7):1246–1263

    Article  Google Scholar 

  • Wu M, Lin X, Wang Y, Wang L, Guo W, Qi D, Peng X, Hagfeldt A, Grätzel M, Ma T (2012) Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J Am Chem Soc 134(7):3419–3428

    Article  Google Scholar 

  • Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115(5):2136–2173

    Article  Google Scholar 

  • Xuan OZ (2011) Transport imaging of multi-junction and CIGS solar cell materials. Master’s thesis, Naval Postgraduate School

    Google Scholar 

  • Yang JC (1998) Advances in amorphous silicon alloy technology—the achievement of high–efficiency multijunction solar cells and modules. Prog Photovolt Res Appl 6:181–186

    Article  Google Scholar 

  • Yastrebova NV (2007) High-efficiency multi-junction solar cells: current status and future potential. University of Ottawa

    Google Scholar 

  • Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau W-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2009) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  Google Scholar 

  • Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2, article number 17032

    Article  Google Scholar 

  • You J, Meng L, Song T, Guo T, Yang Y, Chang W, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, Marco ND, Yang Y (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11(1):75–82

    Article  Google Scholar 

  • Yum J-H, Hagberg DP, Moon S-J, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) A light-resistant organic sensitizer for solar-cell applications. Angew Chem Int Ed 48(9):1576–1580

    Article  Google Scholar 

  • Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925

    Article  Google Scholar 

  • Zhan Z, An J, Zhang H, Hansen RV, Zheng L (2012) Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting. Appl Mater Interfaces 6(2):1139–1144

    Article  Google Scholar 

  • Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem Commun 0(16):2198–2200

    Google Scholar 

  • Zhang H, Mao J, He H, Zhang D, Zhu HL, Xie F, Wong KS, Grätzel M, Choy WCH (2015) A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar‐heterojunction solar cells. Adv Energy Mater 5(3), article number 1501354

    Google Scholar 

  • Zhang H, Cheng J, Lin F, He H, Mao J, Wong KS, Jen AKY, Choy WCH (2016) Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10(1):1503–1511

    Article  Google Scholar 

  • Zhao J, Wang A, Green MA (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73(14):1991–1993

    Article  Google Scholar 

  • Zhao J, Wang A, Green MA (1999) 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog Photovolt Res Appl 7(6):471–474

    Article  Google Scholar 

  • Zhao D, Yu Y, Wang C, Liao W, Shrestha N, Grice CR, Cimaroli AJ, Guan L, Ellingson RJ, Zhu K, Zhao X, Xiong R, Yan Y (2017) Low-band-gap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy 2, article number 17018

    Google Scholar 

Download references

Acknowledgements

AKP and HCP gratefully acknowledge the financial support from University of St Andrews. AKP also thanks the Leverhulme Trust for an Early Career Fellowship (ECF-2017-326) and ScotCHEM for a short-term Postgraduate and Early Career Researcher Exchange (PECRE) fellowship.

Conflict of Interest The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan K. Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, A.K., Potter, H.C. (2019). Advances in Solar Energy: Solar Cells and Their Applications. In: Tyagi, H., Agarwal, A., Chakraborty, P., Powar, S. (eds) Advances in Solar Energy Research. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3302-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3302-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3301-9

  • Online ISBN: 978-981-13-3302-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics