Skip to main content

Achondroplasia

  • Chapter
  • First Online:
Human Pathobiochemistry

Abstract

A pregnant woman was referred to the obstetrics department at a hospital because her doctor considered that her baby might have some congenital skeletal disorder. Echography of the fetus revealed that the fetal femur growth stopped at 27 weeks of gestational age and that the femur length was very short at 33 weeks (−6.7 SD). The chest of the fetus was hypoplastic. In contrast to her baby’s short limbs and narrow chest, its head was large (+1.9 SD). Cephalopelvic disproportion was suspected. Therefore, her doctor chose to conduct a cesarean section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartels CF, Bukulmez H, Padayatti P et al (2004) Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 75:27–34

    Article  CAS  Google Scholar 

  • Bellus GA, Hefferon TW, Ortiz De Luna RI et al (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56:368–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonafe L, Cormier-Daire V, Hall C et al (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167A:2869–2892

    Article  Google Scholar 

  • Brewer JR, Mazot P, Soriano P (2016) Genetic insights into the mechanisms of Fgf signaling. Genes Dev 30:751–771

    Article  CAS  Google Scholar 

  • Chusho H, Tamura N, Ogawa Y et al (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A 98:4016–4021

    Article  CAS  Google Scholar 

  • Deng C, Wynshaw-Boris A, Zhou F et al (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921

    Article  CAS  Google Scholar 

  • Garcia S, Dirat B, Tognacci T et al (2013) Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci Transl Med 5:203ra124

    PubMed  Google Scholar 

  • Harada D, Yamanaka Y, Ueda K et al (2009) FGFR3-related dwarfism and cell signaling. J Bone Miner Metab 27:9–15

    Article  Google Scholar 

  • Hasegawa K, Fukuhara R, Moriwake T et al (2016) A novel mutation p.Ser348Cys in FGFR3 causes achondroplasia. Am J Med Genet A 170A:1370–1372

    Article  Google Scholar 

  • Heuertz S, Le Merrer M, Zabel B et al (2006) Novel FGFR3 mutations creating cysteine residues in the extracellular domain of the receptor cause achondroplasia or severe forms of hypochondroplasia. Eur J Hum Genet 14:1240–1247

    Article  CAS  Google Scholar 

  • Horton WA, Hall JG, Hecht JT (2007) Achondroplasia. Lancet 370:162–172

    Article  CAS  Google Scholar 

  • Ikegawa S, Fukushima Y, Isomura M et al (1995) Mutations of the fibroblast growth factor receptor-3 gene in one familial and six sporadic cases of achondroplasia in Japanese patients. Hum Genet 96:309–311

    Article  CAS  Google Scholar 

  • Jin M, Yu Y, Qi H et al (2012) A novel FGFR3-binding peptide inhibits FGFR3 signaling and reverses the lethal phenotype of mice mimicking human thanatophoric dysplasia. Hum Mol Genet 21:5443–5455

    Article  CAS  Google Scholar 

  • Jonquoy A, Mugniery E, Benoist-Lasselin C et al (2012) A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model. Hum Mol Genet 21:841–851

    Article  CAS  Google Scholar 

  • Komla-Ebri D, Dambroise E, Kramer I et al (2016) Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model. J Clin Invest 126:1871–1884

    Article  Google Scholar 

  • Lorget F, Kaci N, Peng J et al (2012) Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet 91:1108–1114

    Article  CAS  Google Scholar 

  • Makrythanasis P, Temtamy S, Aglan MS et al (2014) A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly. Hum Mutat 35:959–963

    Article  CAS  Google Scholar 

  • Matsushita M, Kitoh H, Ohkawara B et al (2013) Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS One 8:e81569

    Article  Google Scholar 

  • Matsushita M, Hasegawa S, Kitoh H et al (2015) Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene. Endocrinology 156:548–554

    Article  Google Scholar 

  • Miura K, Kim OH, Lee HR et al (2014) Overgrowth syndrome associated with a gain-of-function mutation of the natriuretic peptide receptor 2 (NPR2) gene. Am J Med Genet A 164A:156–163

    Article  Google Scholar 

  • Naski MC, Colvin JS, Coffin JD et al (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977–4988

    CAS  PubMed  Google Scholar 

  • Rousseau F, Bonaventure J, Legeai-Mallet L et al (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254

    Article  CAS  Google Scholar 

  • Shiang R, Thompson LM, Zhu YZ et al (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342

    Article  CAS  Google Scholar 

  • Tachibana K, Suwa S, Nishiyama S, Matsuda I (1997) Height of Japanese achondroplasia patients based on a nationwide investigation. J Pediatr Pract 60:1363–1369 in Japanese

    Google Scholar 

  • Takagi M, Kouwaki M, Kawase K et al (2015) A novel mutation Ser344Cys in FGFR3 causes achondroplasia with severe platyspondyly. Am J Med Genet A 167A:2851–2854

    Article  Google Scholar 

  • Tanaka H, Kubo T, Yamate T et al (1998) Effect of growth hormone therapy in children with achondroplasia: growth pattern, hypothalamic–pituitary function, and genotype. Eur J Endocrinol 138:275–280

    Article  CAS  Google Scholar 

  • Toydemir RM, Brassington AE, Bayrak-Toydemir P et al (2006) A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am J Hum Genet 79:935–941

    Article  CAS  Google Scholar 

  • Ueda K, Yamanaka Y, Harada D et al (2007) PTH has the potential to rescue disturbed bone growth in achondroplasia. Bone 41:13–18

    Article  CAS  Google Scholar 

  • Vasques GA, Amano N, Docko AJ et al (2013) Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. J Clin Endocrinol Metab 98:E1636–E1644

    Article  CAS  Google Scholar 

  • Xie Y, Su N, Jin M et al (2012) Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum Mol Genet 21:3941–3955

    Article  CAS  Google Scholar 

  • Yamashita A, Morioka M, Kishi H et al (2014) Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513:507–511

    Article  CAS  Google Scholar 

  • Yasoda A, Komatsu Y, Chusho H et al (2004) Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10:80–86

    Article  CAS  Google Scholar 

  • Zhang SR, Zhou XQ, Ren X et al (2007) Ser217Cys mutation in the Ig II domain of FGFR3 in a Chinese family with autosomal dominant achondroplasia. Chin Med J 120:1017–1019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosei Hasegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasegawa, K., Tanaka, H., Seino, Y. (2019). Achondroplasia. In: Oohashi, T., Tsukahara, H., Ramirez, F., Barber, C., Otsuka, F. (eds) Human Pathobiochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-13-2977-7_14

Download citation

Publish with us

Policies and ethics