Abstract
Correlation filter has recently attracted much attention in visual tracking due to their excellent performance on both accuracy and efficiency. However, the adopted features, such as Colors, HOG and deep features, usually include noises and/or corruptions which might disturb the tracking performance. To handle this problem, we propose a novel noise-aware correlation filter method for robust visual tracking. In particular, we decompose the input feature matrix into a “clean” feature matrix and a sparse noise matrix, and then use the “clean” feature to train the correlation filter. To optimize the proposed correlation filter, we design an efficient ADMM (alternation direction of multipliers) solver. Extensive experimental results on the OTB-2013 dataset show that the proposed approach performs favorably against state-of-the-art trackers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550. IEEE (2010)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)
Chen, M., Ganesh, A., Lin, Z., Ma, Y., Wright, J., Wu, L.: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Coordinated Science Laboratory Report no. UILU-ENG-09-2214 (2009)
Danelljan, M., Hager, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: Proceedings of British Machine Vision Conference. BMVA Press (2014)
Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2017)
Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4310–4318. IEEE (2015)
Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29
Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1097. IEEE (2014)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: Proceedings of IEEE Conference on Computer Vision, pp. 1144–1152. IEEE (2017)
Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends® Commun. Inf. Theory 2(3), 155–239 (2006)
Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: Proceedings of IEEE International Conference on Computer Vision, pp. 263–270. IEEE (2011)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)
Li, C., Cheng, H., Hu, S., Liu, X., Tang, J., Lin, L.: Learning collaborative sparse representation for grayscale-thermal tracking. IEEE Trans. Image Process. 25(12), 5743–5756 (2016)
Li, C., Liang, X., Lu, Y., Zhao, N., Tang, J.: RGB-T object tracking: benchmark and baseline. arXiv preprint arXiv:1805.08982 (2018)
Li, C., Lin, L., Zuo, W., Tang, J.: Learning patch-based dynamic graph for visual tracking. In: Proceedings of The AAAI Conference on Artificial Intelligence, pp. 4126–4132. AAAI (2017)
Li, C., Lin, L., Zuo, W., Tang, J., Yang, M.H.: Visual tracking via dynamic graph learning. IEEE TPAMI (2018). https://doi.org/10.1109/TPAMI.2018.2864965
Li, C., Wu, X., Bao, Z., Tang, J.: ReGLe: spatially regularized graph learning for visual tracking. In: Proceedings of the ACM on Multimedia Conference, pp. 252–260. ACM (2017)
Li, C., Zhao, N., Lu, Y., Zhu, C., Tang, J.: Weighted sparse representation regularized graph learning for RGB-T object tracking. In: Proceedings of the ACM on Multimedia Conference, pp. 1856–1864. ACM (2017)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18
Lukezic, A., Vojir, T., Cehovin, L., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2017)
Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082. IEEE (2015)
Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. Nato Sci. Ser. Sub Ser. III Comput. Syst. Sci. 190, 131–154 (2003)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: CoRR (2014)
Sui, Y., Tang, Y., Zhang, L.: Discriminative low-rank tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3002–3010. IEEE (2015)
Sun, C., Wang, D., Lu, H., Yang, M.H.: Correlation tracking via joint discrimination and reliability learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 489–497. IEEE (2018)
Tang, M., Feng, J.: Multi-kernel correlation filter for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3038–3046. IEEE (2015)
Tang, M., Yu, B., Zhang, F., Wang, J.: High-speed tracking with multi-kernel correlation filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4874–4883. IEEE (2018)
Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5000–5008. IEEE (2017)
Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418. IEEE (2013)
Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)
Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1838–1845. IEEE (2012)
Acknowledgment
This work is jointly supported by National Natural Science Foundation of China (61702002, 61472002), China Postdoctoral Science Foundation, Natural Science Foundation of Anhui Province (1808085QF187), Natural Science Foundation of Anhui Higher Education Institution of China (KJ2017A017), and Co-Innovation Center for Information Supply & Assurance Technology, Anhui University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liang, X., Wang, X., Tang, J., Li, C. (2018). Learning Noise-Aware Correlation Filter for Visual Tracking. In: Xu, Z., Gao, X., Miao, Q., Zhang, Y., Bu, J. (eds) Big Data. Big Data 2018. Communications in Computer and Information Science, vol 945. Springer, Singapore. https://doi.org/10.1007/978-981-13-2922-7_14
Download citation
DOI: https://doi.org/10.1007/978-981-13-2922-7_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-2921-0
Online ISBN: 978-981-13-2922-7
eBook Packages: Computer ScienceComputer Science (R0)