Skip to main content

Deep Dissimilarity Measure for Trajectory Analysis

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 946))

Included in the following conference series:

Abstract

Quantifying dissimilarities between two trajectories is a challenging yet fundamental task in many trajectory analysis systems. Existing methods are computationally expensive to calculate. We proposed a dissimilarity measure estimate for trajectory data by using deep learning methodology. One advantage of the proposed method is that it can get executed on GPU, which can significantly reduce the execution time for processing large number of data. The proposed network is trained using synthetic data. A simulator to generate synthetic trajectories is proposed. We used a publicly available dataset to evaluate the proposed method for the task of trajectory clustering. Our experiments show the performance of our proposed method is comparable with other well-known dissimilarity measures while it is substantially faster to compute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teimouri, M., Indahl, U., Sickel, H., Tveite, H.: Deriving animal movement behaviors using movement parameters extracted from location data. ISPRS Int. J. Geo-Inf. 7(2), 78 (2018)

    Article  Google Scholar 

  2. Atev, S., Miller, G., Papanikolopoulos, N.P.: Clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 11(3), 647–657 (2010)

    Article  Google Scholar 

  3. Morris, B.T., Trivedi, M.M.: Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2287–2301 (2011)

    Article  Google Scholar 

  4. Weiming, H., Xi, L., Guodong, T., Maybank, S., Zhongfei, Z.: An incremental DPMM-based method for trajectory clustering, modeling, and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1051–1065 (2013)

    Article  Google Scholar 

  5. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 285–289. ACM (2000)

    Google Scholar 

  6. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: 2002 Proceedings of 18th International Conference on Data Engineering, pp. 673–684. IEEE (2002)

    Google Scholar 

  7. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. Presented at the Proceedings of the 2005 ACM SIGMOD International Conference on Management of data, Baltimore, Maryland (2005)

    Google Scholar 

  8. Wang, X., Ma, K.T., Ng, G.W., Grimson, W.E.: Trajectory analysis and semantic region modeling using a nonparametric Bayesian model. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  9. Piciarelli, C., Foresti, G.L.: On-line trajectory clustering for anomalous events detection. Pattern Recognit. Lett. 27(15), 1835–1842 (2006)

    Article  Google Scholar 

  10. Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. Presented at the Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, vol. 30 (2004)

    Google Scholar 

  11. Atev, S., Masoud, O., Papanikolopoulos, N.: Learning traffic patterns at intersections by spectral clustering of motion trajectories. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4851–4856. IEEE (2006)

    Google Scholar 

  12. Alt, H.: The computational geometry of comparing shapes. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 235–248. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03456-5_16

    Chapter  Google Scholar 

  13. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014)

    Article  Google Scholar 

  14. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: experimental studies and comparative evaluation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 312–319 (2009)

    Google Scholar 

  15. Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: 2006 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 1135–1138 (2006)

    Google Scholar 

  16. Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Fusion of similarity measures for time series classification. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011. LNCS (LNAI), vol. 6679, pp. 253–261. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21222-2_31

    Chapter  Google Scholar 

  17. Weiming, H., Xuejuan, X., Zhouyu, F., Xie, D., Tieniu, T., Maybank, S.: A system for learning statistical motion patterns. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1450–1464 (2006)

    Article  Google Scholar 

  18. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  19. Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  20. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  22. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  23. Byeon, W., Breuel, T.M., Raue, F., Liwicki, M.: Scene labeling with LSTM recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3547–3555 (2015)

    Google Scholar 

  24. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  25. Zimmermann, H.-G., Tietz, C., Grothmann, R.: Forecasting with recurrent neural networks: 12 tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 687–707. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_37

    Chapter  Google Scholar 

  26. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr. 12(4), 461–486 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubiyah Yusof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arfa, R., Yusof, R., Shabanzadeh, P. (2018). Deep Dissimilarity Measure for Trajectory Analysis. In: Li, L., Hasegawa, K., Tanaka, S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2018. Communications in Computer and Information Science, vol 946. Springer, Singapore. https://doi.org/10.1007/978-981-13-2853-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2853-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2852-7

  • Online ISBN: 978-981-13-2853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics