Skip to main content

Drosophila Neural Stem Cells: A Primer for Understanding Mammalian Neural Development and Disease

  • Chapter
  • First Online:
Insights into Human Neurodegeneration: Lessons Learnt from Drosophila

Abstract

Drosophila is an established model for over a century to study the genetic, epigenetic, and molecular aspects of various cellular processes. Conservation of gene regulatory mechanisms, signaling pathways, and homology of over 75% of fly genes with mammals have helped us understand diverse aspects of human biology. Drosophila neural stem cells (NSCs) or neuroblasts (NBs) were first identified in the nineteenth century; since then, they are being used as a model to understand the underlying mechanisms of the stem cell fate determination. The countless possibilities to manipulate the fly genome prove advantageous to address complicated questions of stem cell biology.

Stem cell lifecycle is dynamically regulated and is far more intricate than the normal cells. Stem cells have the property to self-renew, differentiate, or undergo dormancy until they are required again. Moreover, NSCs generate diverse progeny to perform specialized functions and are capable to end their life either by apoptosis or exit the cell cycle after fulfilling the required purpose. How are these complicated and yet organized cellular processes to make a functional nervous system regulated? What are the cues involved in the process? Are they all intrinsic to NSCs or does the stem cell environment have a role to play as well? In this chapter, we have discussed and summarized the information available to address these questions. We have reviewed and compared various conserved aspects of fly NSC biology with mammalian NSC behaviors. It is interesting to learn that the stem cells do not function in isolation and the systemic signaling and cues from its micro and macro environments play distinct roles to regulate the NSC fate decisions. Thus, a better understanding of cell intrinsic and cell extrinsic signaling and how they communicate and function in sync with the environment is necessary for effective use of stem cells in translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ables, J. L., DeCarolis, N. A., Johnson, M. A., Rivera, P. D., Gao, Z., Cooper, D. C., Radtke, F., Hsieh, J., & Eisch, A. J. (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. Journal of Neuroscience, 30, 10484–10492.

    Article  CAS  PubMed  Google Scholar 

  • Abrams, J. M., White, K., Fessler, L. I., & Steller, H. (1993). Programmed cell death during Drosophila embryogenesis. Development, 117, 29–43.

    CAS  PubMed  Google Scholar 

  • Ahn, S., & Joyner, A. L. (2005). In vivo analysis of quiescent adult neural stem cells responding to sonic hedgehog. Nature, 437, 894–897.

    Article  CAS  PubMed  Google Scholar 

  • Albertson, R., & Doe, C. Q. (2003). Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nature Cell Biology, 5, 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Allan, D. W., & Thor, S. (2015). Transcriptional selectors, masters, and combinatorial codes: Regulatory principles of neural subtype specification. Wiley Interdisciplinary Reviews: Developmental Biology, 4, 505–528.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, M. S., & Bray, S. J. (2005). Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mechanisms of Development, 122, 1282–1293.

    Article  CAS  PubMed  Google Scholar 

  • Alsio, J. M., Tarchini, B., Cayouette, M., & Livesey, F. J. (2013). Ikaros promotes early-born neuronal fates in the cerebral cortex. Proceedings of the National Academy of Sciences, 110, E716–E725.

    Article  CAS  Google Scholar 

  • Artavanis-Tsakonas, S., & Simpson, P. (1991). Choosing a cell fate: A view from the notch locus. Trends in Genetics, 7, 403–408.

    Article  CAS  PubMed  Google Scholar 

  • Arya, R., & White, K. (2015). Cell death in development: Signaling pathways and core mechanisms. Seminars in Cell & Developmental Biology, 39, 12–19.

    Article  CAS  Google Scholar 

  • Arya, R., Sarkissian, T., Tan, Y., & White, K. (2015). Neural stem cell progeny regulate stem cell death in a notch and Hox dependent manner. Cell Death and Differentiation, 22, 1378–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya, R., Gyonjyan, S., Harding, K., Sarkissian, T., Li, Y., Zhou, L., & White, K. (2019). A cut/cohesin axis alters the chromatin landscape to facilitate neuroblast death. Development.

    Google Scholar 

  • Bai, R. Y., Ouyang, T., Miething, C., Morris, S. W., Peschel, C., & Duyster, J. (2000). Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood, 96, 4319–4327.

    Article  CAS  PubMed  Google Scholar 

  • Barberis, I., Martini, M., Iavarone, F., & Orsi, A. (2016). Available influenza vaccines: Immunization strategies, history and new tools for fighting the disease. Journal of Preventive Medicine and Hygiene, 57, E41–E46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bardin, A. J., Le Borgne, R., & Schweisguth, F. (2004). Asymmetric localization and function of cell-fate determinants: A fly’s view. Current Opinion in Neurobiology, 14, 6–14.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, V. (1904). Zur inneren Metamorphose des Centralnervensystems der Insecten. Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere, 123–152.

    Google Scholar 

  • Baumgardt, M., Karlsson, D., Terriente, J., Díaz-Benjumea, F. J., & Thor, S. (2009). Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell, 139, 969–982.

    Article  CAS  PubMed  Google Scholar 

  • Baumgardt, M., Karlsson, D., Salmani, B. Y., Bivik, C., MacDonald, R. B., Gunnar, E., & Thor, S. (2014). Global programmed switch in neural daughter cell proliferation mode triggered by a temporal Gene Cascade. Developmental Cell, 30, 192–208.

    Article  CAS  PubMed  Google Scholar 

  • Bayraktar, O. A., & Doe, C. Q. (2013). Combinatorial temporal patterning in progenitors expands neural diversity. Nature, 498, 449–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bello, B. (2006). The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development, 133, 2639–2648.

    Article  CAS  PubMed  Google Scholar 

  • Bello, B., Holbro, N., & Reichert, H. (2007). Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila. Development, 134, 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  • Bello, B. C., Izergina, N., Caussinus, E., & Reichert, H. (2008). Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Development, 3.

    Google Scholar 

  • Bertrand, N., Castro, D. S., & Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nature Reviews. Neuroscience, 3, 517–530.

    Article  CAS  PubMed  Google Scholar 

  • Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: Asymmetric cell division in Drosophila, C. elegans and Vertebrates. Current Biology, 14, R674–R685.

    Article  CAS  PubMed  Google Scholar 

  • Betschinger, J., Mechtler, K., & Knoblich, J. A. (2006). Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell, 124, 1241–1253.

    Article  CAS  PubMed  Google Scholar 

  • Birkholz, O., Vef, O., Rogulja-Ortmann, A., Berger, C., & Technau, G. M. (2013). Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development, 140, 3552–3564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjornsson, C. S., Apostolopoulou, M., Tian, Y., & Temple, S. (2015). It takes a village: Constructing the neurogenic niche. Developmental Cell, 32, 435–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum, B., & Benvenisty, N. (2008). The Tumorigenicity of human embryonic stem cells. Advances in Cancer Research, 100, 133–158.

    Article  PubMed  Google Scholar 

  • Boone, J. Q., & Doe, C. Q. (2008). Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Developmental Neurobiology, 68, 1185–1195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman, S. K., Neumüller, R. A., Novatchkova, M., Du, Q., & Knoblich, J. A. (2006). The Drosophila NuMA homolog mud regulates spindle orientation in asymmetric cell division. Developmental Cell, 10, 731–742.

    Article  CAS  PubMed  Google Scholar 

  • Brand, A. H., & Livesey, F. J. (2011). Neural stem cell biology in vertebrates and invertebrates: More alike than different? Neuron, 70, 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Bray, S. (1998). Notch signalling in Drosophila: Three ways to use a pathway. Seminars in Cell & Developmental Biology, 9, 591–597.

    Article  CAS  Google Scholar 

  • Britton, J. S., & Edgar, B. A. (1998). Environmental control of the cell cycle in Drosophila: Nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development, 125, 2149–2158.

    CAS  PubMed  Google Scholar 

  • Brody, T., & Odenwald, W. F. (2000). Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Developmental Biology, 226, 34–44.

    Article  CAS  PubMed  Google Scholar 

  • Buss, R. R., Sun, W., & Oppenheim, R. W. (2006). Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Cabernard, C., & Doe, C. Q. (2009). Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Developmental Cell, 17, 134–141.

    Article  CAS  PubMed  Google Scholar 

  • Cabernard, C., Prehoda, K. E., & Doe, C. Q. (2010). A spindle-independent cleavage furrow positioning pathway. Nature, 467, 91–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Y., Wasser, M., Li, P., Yang, X., & Chia, W. (2004). Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell, 90, 437–447.

    Google Scholar 

  • Campos, L. S., Duarte, A. J. A. J., Branco, T., & Henrique, D. (2001). mDll1 andmDll3 expression in the developing mouse brain: Role in the establishment of the early cortex. Journal of Neuroscience Research, 64, 590–598.

    Article  CAS  PubMed  Google Scholar 

  • Campos-Ortega, J. A., & Knust, E. (2003). Genetics of early neurogenesis in Drosophila Melanogaster. Annual Review of Genetics, 24, 387–407.

    Article  Google Scholar 

  • Campuzano, S., & Modolell, J. (1992). Patterning of the Drosophila nervous system: The achaete-scute gene complex. Trends in Genetics, 8, 202–208.

    Article  CAS  PubMed  Google Scholar 

  • Cashio, P., Lee, T. V., & Bergmann, A. (2005). Genetic control of programmed cell death in Drosophila melanogaster. Seminars in Cell & Developmental Biology, 16, 225–235.

    Article  CAS  Google Scholar 

  • Cenci, C., Gould, A. P., Cenci, C., & Gould, A. P. (2005). Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development, 132, 3835–3845.

    Article  CAS  PubMed  Google Scholar 

  • Chai, P. C., Liu, Z., Chia, W., & Cai, Y. (2013). Hedgehog signaling acts with the temporal Cascade to promote neuroblast cell cycle exit. PLoS Biology, 11.

    Google Scholar 

  • Chang, K. C., Wang, C., & Wang, H. (2012). Balancing self-renewal and differentiation by asymmetric division: Insights from brain tumor suppressors in Drosophila neural stem cells. BioEssays, 34, 301–310.

    Article  PubMed  Google Scholar 

  • Chell, J. M., & Brand, A. H. (2010). Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell, 143, 1161–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C.-H., Rialle, S., Maurange, C., Parrinello, H., Foppolo, S., Lanet, E., Sokol, N. S., Dillard, C., & Narbonne-Reveau, K. (2016). Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. eLife, 5.

    Google Scholar 

  • Cheng, L. Y., Bailey, A. P., Leevers, S. J., Ragan, T. J., Driscoll, P. C., & Gould, A. P. (2011). Anaplastic lymphoma kinase spares organ growth during nutrient restriction in drosophila. Cell, 146, 435–447.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, T. H., & Rando, T. A. (2013). Molecular regulation of stem cell quiescence. Nature Reviews. Molecular Cell Biology, 14, 329–340.

    Article  CAS  PubMed  Google Scholar 

  • Chia, W., Somers, W. G., & Wang, H. (2008). Drosophila neuroblast asymmetric divisions: Cell cycle regulators, asymmetric protein localization, and tumorigenesis. The Journal of Cell Biology, 180, 267–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choksi, S. P., Southall, T. D., Bossing, T., Edoff, K., de Wit, E., Fischer, B. E. E., van Steensel, B., Micklem, G., Brand, A. H., Micklem, G., et al. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Developmental Cell, 11, 775–789.

    Article  CAS  PubMed  Google Scholar 

  • Codega, P., Silva-Vargas, V., Paul, A., Maldonado-Soto, A. R., DeLeo, A. M., Pastrana, E., & Doetsch, F. (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82, 545–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coller, H. A., Sang, L., & Roberts, J. M. (2006). A new description of cellular quiescence. PLoS Biology, 4, 0329–0349.

    Article  CAS  Google Scholar 

  • Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., & Léopold, P. (2003). A nutrient sensor mechanism controls Drosophila growth. Cell, 114, 739–749.

    Article  CAS  PubMed  Google Scholar 

  • Costa, M. R., Ortega, F., Brill, M. S., Beckervordersandforth, R., Petrone, C., Schroeder, T., Gotz, M., & Berninger, B. (2011). Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development, 138, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  • Covic, M., Giachino, C., Schwarz, T. J., Taylor, V., Karaca, E., Lie, D. C., Kremmer, E., Pfrieger, F. W., Bigas, A., Espinosa, L., et al. (2010). RBPJ -dependent signaling is essential for Long-term maintenance of neural stem cells in the adult hippocampus. The Journal of Neuroscience, 30, 13794–13807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cubas, P., De Celis, J. F., Campuzano, S., & Modolell, J. (1991). Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes & Development, 5, 996–1008.

    Article  CAS  Google Scholar 

  • Datta, S. (1995). Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system. Development, 121, 1173–1182.

    CAS  PubMed  Google Scholar 

  • Demidenko, Z., Badenhorst, P., Jones, T., Bi, X., & Mortin, M. A. (2001). Regulated nuclear export of the homeodomain transcription factor Prospero. Development, 128, 1359–1367.

    CAS  PubMed  Google Scholar 

  • Desplan, C., Erclik, T., Wells, B., Li, X., Bertet, C., & Cavey, M. (2014). Temporal patterning of neuroblasts controls notch-mediated cell survival through regulation of hid or reaper. Cell, 158, 1173–1186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dirks, P. B. (2008). Brain tumor stem cells: Bringing order to the chaos of brain cancer. Journal of Clinical Oncology, 26, 2916–2924.

    Article  PubMed  Google Scholar 

  • Dittmer, K., Saltman, D., Kirstein, M., Shapiro, D., Valentine, M., Look, A., & Morris, S. (2006). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science (80-. ), 263, 1281–1284.

    Google Scholar 

  • Doe, C. Q. (2008). Neural stem cells: Balancing self-renewal with differentiation. Development, 135, 1575–1587.

    Article  CAS  PubMed  Google Scholar 

  • Doe, C. Q. (2017). Temporal patterning in the DrosophilaCNS. Annual Review of Cell and Developmental Biology, 33, 219–240.

    Article  CAS  PubMed  Google Scholar 

  • Doe, C. Q., & Technau, G. M. (1993). Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends in Neurosciences, 16, 510–514.

    Article  CAS  PubMed  Google Scholar 

  • Dumstrei, K., Wang, F., Nassif, C., & Hartenstein, V. (2003). Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin. J. Comp. Neurol., 455, 451–462.

    PubMed  Google Scholar 

  • Durrer, A., Suter, U., Taylor, V., Stump, G., Klein, A.-L., & Lütolf, S. (2002). Notch1 and its ligands Delta-like and jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mechanisms of Development, 114, 153–159.

    Article  PubMed  Google Scholar 

  • Dwyer, N. D., Chen, B., Chou, S.-J., Hippenmeyer, S., Nguyen, L., & Ghashghaei, H. T. (2016). Neural stem cells to cerebral cortex: Emerging mechanisms regulating progenitor behavior and productivity. The Journal of Neuroscience, 36, 11394–11401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer, M. A. (2003). Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. Cell Cycle, 2, 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Ebens, A. J., Garren, H., Cheyette, B. N. R., & Zipursky, S. L. (1993). The Drosophila anachronism locus: A glycoprotein secreted by glia inhibits neuroblast proliferation. Cell, 74, 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Egger, B., Boone, J. Q., Stevens, N. R., Brand, A. H., & Doe, C. Q. (2007). Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Development, 2.

    Google Scholar 

  • Egger, B., Chell, J. M., & Brand, A. H. (2008). Insights into neural stem cell biology from flies. Philosophical Transactions of the Royal Society B, 363, 39–56.

    Article  CAS  Google Scholar 

  • Elliott, J., Jolicoeur, C., Ramamurthy, V., & Cayouette, M. (2008). Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron, 60, 26–39.

    Article  CAS  PubMed  Google Scholar 

  • F., P. D. (1939). Effects of notch deficiencies. Drosophila Information Service, 64.

    Google Scholar 

  • Fan, X., & Eberhart, C. G. (2008). Medulloblastoma stem cells. Journal of Clinical Oncology, 26, 2821–2827.

    Article  CAS  PubMed  Google Scholar 

  • Fish, J. L., Dehay, C., Kennedy, H., & Huttner, W. B. (2008). Making bigger brains-the evolution of neural-progenitor-cell division. Journal of Cell Science, 121, 2783–2793.

    Article  CAS  PubMed  Google Scholar 

  • Florio, M. and Huttner, W. B. (2014). Neural progenitors, neurogenesis and the evolution of the neocortex.

    Article  CAS  PubMed  Google Scholar 

  • Franco, S. J., & Müller, U. (2013). Shaping our minds: Stem and progenitor cell diversity in the mammalian Neocortex. Neuron, 77, 19–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois, V., Solloway, M., O’Neill, J. W., Emery, J., Bier, E., Francois, V., Solloway, M., & O’Neill, J. W. (1994). Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes & Development, 8, 2602–2616.

    Article  CAS  Google Scholar 

  • Freeman, M. R. (2016). Drosophila central nervous system glia. Cold Spring Harbor Perspectives in Biology, 7, a020552.

    Article  CAS  Google Scholar 

  • Fu, N. Y., Rios, A. C., Pal, B., Law, C. W., Jamieson, P., Liu, R., Vaillant, F., Jackling, F., Liu, K. H., Smyth, G. K., et al. (2017). Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nature Cell Biology, 19, 164–176.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: Stem cells and their niche. Cell, 116, 769–778.

    Article  CAS  PubMed  Google Scholar 

  • Fuentealba, L. C., Obernier, K., & Alvarez-Buylla, A. (2012). Adult neural stem cells bridge their niche. Cell Stem Cell, 10, 698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerstenberg, S., Peng, C.-Y. Y., Alvarez-Ortiz, P., Hor, T., Doe, C. Q., & Peng, C.-Y. Y. (1998). Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Molecular and Cellular Neurosciences, 12, 325–339.

    Article  CAS  PubMed  Google Scholar 

  • Gabilondo, H., Baumgardt, M., Ulvklo, C., Angel, A., Thor, S., Benito-Sipos, J., & Torroja, L. (2011). Seven up acts as a temporal factor during two different stages of neuroblast 5-6 development. Development, 138, 5311–5320.

    Article  PubMed  CAS  Google Scholar 

  • Ghysen, A., & Dambly-Chaudiere, C. (1989). Genesis of the Drosophila peripheral nervous system. Trends in Genetics, 5, 251–255.

    Article  CAS  PubMed  Google Scholar 

  • Gomez, M., Gomez, V., & Hergovich, A. (2014). The hippo pathway in disease and therapy: Cancer and beyond. Clinical and Translational Medicine, 3, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwald, I. (2012). Notch and the awesome power of genetics. Genetics, 191, 655–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosskortenhaus, R., Pearson, B. J., Marusich, A., & Doe, C. Q. (2005). Regulation of temporal identity transitions in Drosophila neuroblasts. Developmental Cell, 8, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Grosskortenhaus, R., Robinson, K. J., & Doe, C. Q. (2006). Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. Genes & Development, 20, 2618–2627.

    Article  CAS  Google Scholar 

  • Guo, M., Jan, L. Y., & Jan, Y. N. (1996). Control of daughter cell fates during asymmetric division: Interaction of numb and notch. Neuron, 17, 27–41.

    Article  PubMed  Google Scholar 

  • Hakes, A. E., Otsuki, L., & Brand, A. H. (2018). A newly discovered neural stem cell population is generated by the optic lobe neuroepithelium during embryogenesis in Drosophila melanogaster. Development, 145, dev166207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamburger, V. (1975). Cell death in the development of the lateral motor column of the chick embryo. The Journal of Comparative Neurology, 160, 535–546.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, D. V., Lui, J. H., Parker, P. R. L. L., & Kriegstein, A. R. (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 464, 554–561.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, C. G., Moroishi, T., & Guan, K.-L. L. (2015). YAP and TAZ: A nexus for hippo signaling and beyond. Elsevier.

    Google Scholar 

  • Harding, K., & White, K. (2018). Drosophila as a model for developmental biology: Stem cell-fate decisions in the developing nervous system. Journal of Development Biology, 6, 25.

    Article  CAS  Google Scholar 

  • Hariharan, I. K. (2015). Organ size control: Lessons from Drosophila. Developmental Cell, 34, 255–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, R. E., Pargett, M., Sutcliffe, C., Umulis, D., & Ashe, H. L. (2011). Brat promotes stem cell differentiation via control of a Bistable switch that restricts BMP signaling. Developmental Cell, 20, 72–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harte, P., Cui, K., Chepelev, I., Li, G., Zhou, L., Tie, F., Li, X., Lin, N., Liu, B., Zhao, K., et al. (2011). A barrier-only boundary element delimits the formation of facultative heterochromatin in Drosophila melanogaster and vertebrates. Molecular and Cellular Biology, 31, 2729–2741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartenstein, V., & Campos-Ortega, J. A. (1984). Early neurogenesis in wild-type Drosophila melanogaster. Wilhelm Roux’s Archives Development Biology, 193, 308–325.

    Article  Google Scholar 

  • Hartenstein, V., & Wodarz, A. (2013). Initial neurogenesis in Drosophila. Wiley Interdisciplinary Reviews: Developmental Biology, 2, 701–721.

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein, V., Rudloff, E., & Campos-Ortega, J. A. (1987). The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Roux’s Archive Development Biology, 196, 473–485.

    Article  Google Scholar 

  • Haubensak, W., Attardo, A., Denk, W., & Huttner, W. B. (2004). From the cover: Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. Proceedings of the National Academy of Sciences, 101, 3196–3201.

    Article  CAS  Google Scholar 

  • Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., Elison, J. T., Swanson, M. R., Zhu, H., Botteron, K. N., et al. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542, 348–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata, J., Nakagoshi, H., Nabeshima, Y. I., & Matsuzaki, F. (1995). Asymmetric segregation of the homeodomain protein Prospero duringDrosophila development. Nature, 377, 627–630.

    Article  CAS  PubMed  Google Scholar 

  • Hitoshi, S., Alexson, T., Tropepe, V., Donoviel, D., Elia, A. J., Nye, J. S., Conlon, R. A., Mak, T. W., Bernstein, A., & Van Der Kooy, D. (2002). Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes & Development, 16, 846–858.

    Article  CAS  Google Scholar 

  • Holguera, I. and Desplan, C. (2018). Neuronal specification in space and time. Science (80-. ). 362, 176–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homem, C. C. F., & Knoblich, J. A. (2012). Drosophila neuroblasts: A model for stem cell biology. Development, 139, 4297–4310.

    Article  CAS  PubMed  Google Scholar 

  • Homem, C. C. F., Reichardt, I., Berger, C., Lendl, T. and Knoblich, J. A. (2013). Long-term live cell imaging and automated 4D analysis of Drosophila neuroblast lineages. PLoS One 8,.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homem, C. C. F., Steinmann, V., Burkard, T. R., Jais, A., Esterbauer, H., & Knoblich, J. A. (2014). Ecdysone and mediator change energy metabolism to terminate proliferation in drosophila neural stem cells. Cell, 158, 874–888.

    Article  CAS  PubMed  Google Scholar 

  • Homem, C. C. F. F., Repic, M. and Knoblich, J. A. (2015). Proliferation control in neural stem and progenitor cells.

    Book  Google Scholar 

  • Hoyle, G. (1986). Glial cells of an insect ganglion. The Journal of Comparative Neurology, 246, 85–103.

    Article  CAS  PubMed  Google Scholar 

  • Ikeshima-Kataoka, H., Matsuzaki, F., Doe, C. Q., Skeath, J. B., Nabeshima, Y. I., Doe, C. Q., & Matsuzaki, F. (1997). Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature, 390, 625–629.

    Article  CAS  PubMed  Google Scholar 

  • Isshiki, T., Pearson, B., Holbrook, S., & Doe, C. Q. (2001). Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell, 106, 511–521.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M., Masuda, N., Shinomiya, K., Endo, K., & Ito, K. (2013). Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Current Biology, 23, 644–655.

    Article  CAS  PubMed  Google Scholar 

  • Izergina, N., Balmer, J., Bello, B., & Reichert, H. (2009). Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Development, 4, 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Izumi, Y., Ohta, N., Hisata, K., Raabe, T., & Matsuzaki, F. (2006). Drosophila pins-binding protein mud regulates spindle-polarity coupling and centrosome organization. Nature Cell Biology, 8, 586–593.

    Article  CAS  PubMed  Google Scholar 

  • Jan, L. Y., Wildonger, J., Jan, Y.-N., Barshow, S., & Zhu, S. (2011). Ets transcription factor pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proceedings of the National Academy of Sciences, 108, 20615–20620.

    Article  Google Scholar 

  • Janssens, D. H., & Lee, C.-Y. (2014). It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Seminars in Cell & Developmental Biology, 28, 63–69.

    Article  CAS  Google Scholar 

  • Januschke, J., & Näthke, I. (2014). Stem cell decisions: A twist of fate or a niche market? Seminars in Cell & Developmental Biology, 34, 116–123.

    Article  Google Scholar 

  • Jiang, C., Lamblin, A. F. J., Steller, H., & Thummel, C. S. (2000). A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Molecular Cell, 5, 445–455.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, M.-M., Jan, Y. N., Shen, C.-P., Jan, L. Y., Knoblich, J. A., & Chan, Y.-M. (2008). Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes & Development, 12, 1837–1846.

    Google Scholar 

  • Jorgens, G. (1987). Segmental organisation of the tail region in the embryo of Drosophila melanogaster. Roux’s Arch. Developmental Biology, 196, 141–157.

    Google Scholar 

  • Kaltschmidt, J. A., Davidson, C. M., Brown, N. H., & Brand, A. H. (2000). Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biology, 2, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Kanai, M. I., Okabe, M., & Hiromi, Y. (2005). Seven-up controls switching of transcription factors that specify temporal identities of drosophila neuroblasts. Developmental Cell, 8, 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Kang, K. H., & Reichert, H. (2015). Control of neural stem cell self-renewal and differentiation in Drosophila. Cell and Tissue Research, 359, 33–45.

    Article  CAS  PubMed  Google Scholar 

  • Karcavich, R., & Doe, C. Q. (2005). Drosophila neuroblast 7-3 cell lineage: A model system for studying programmed cell death, notch/numb signaling, and sequential specification of ganglion mother cell identity. The Journal of Comparative Neurology, 481, 240–251.

    Article  PubMed  Google Scholar 

  • Kelava, I., Reillo, I., Murayama, A. Y., Kalinka, A. T., Stenzel, D., Tomancak, P., Matsuzaki, F., Lebrand, C., Sasaki, E., Schwamborn, J. C., et al. (2012). Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset callithrix jacchus. Cerebral Cortex, 22, 469–481.

    Article  PubMed  Google Scholar 

  • Khandelwal, R., Sipani, R., Govinda Rajan, S., Kumar, R. and Joshi, R. (2017). Combinatorial action of Grainyhead, Extradenticle and notch in regulating Hox mediated apoptosis in Drosophila larval CNS. PLoS Genet. 13,.

    Google Scholar 

  • Kintner, C. (2002). Neurogenesis in embryos and in adult neural stem cells. The Journal of Neuroscience, 22, 639–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoblich, J. A. (2010). Asymmetric cell division: Recent developments and their implications for tumour biology. Nature Reviews. Molecular Cell Biology, 11, 849–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoblich, J. A., Jan, L. Y., & Jan, Y. N. (1995). Asymmetric segregation of numb and prospero during cell division. Nature, 377, 624–627.

    Article  CAS  PubMed  Google Scholar 

  • Knoblich, J. A., Du, Q., Bowman, S. K., Novatchkova, M., & Neumüller, R. A. (2006). The Drosophila NuMA homolog mud regulates spindle orientation in asymmetric cell division. Developmental Cell, 10, 731–742.

    Article  PubMed  CAS  Google Scholar 

  • Komori, H., Xiao, Q., Janssens, D. H., Dou, Y., & Lee, C. Y. (2014). Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead. eLife, 3, 1–18.

    Article  CAS  Google Scholar 

  • Kovacs, W. J., Semenkovich, C. F., Lutolf, M. P., Zurkirchen, L., Jessberger, S., Araúzo-Bravo, M. J., Machado, R. A. C., Zamboni, N., von Schoultz, C., Karalay, Ö., et al. (2012). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493, 226–230.

    PubMed  PubMed Central  Google Scholar 

  • Kriegstein, A., Noctor, S., & Martínez-Cerdeño, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews. Neuroscience, 7, 883–890.

    Article  CAS  PubMed  Google Scholar 

  • Kuchinke, U., Grawe, F., & Knust, E. (1998). Control of spindle orientation in Drosophila by the par-3-related PDZ-domain protein bazooka. Current Biology, 8, 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  • Lai, S.-L., & Doe, C. Q. (2014). Transient nuclear Prospero induces neural progenitor quiescence. eLife, 3.

    Google Scholar 

  • Lancaster, M. A., & Knoblich, J. A. (2012). Spindle orientation in mammalian cerebral cortical development. Current Opinion in Neurobiology, 22, 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P., & Doe, C. Q. (2006a). Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Developmental Cell, 10, 441–449.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. Y., Andersen, R. O., Cabernard, C., Manning, L., Tran, K. D., Lanskey, M. J., Bashirullah, A., & Doe, C. Q. (2006b). Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/numb cortical polarity and spindle orientation. Genes & Development, 20, 3464–3474.

    Article  CAS  Google Scholar 

  • Lehtinen, M. K., Zappaterra, M. W., Chen, X., Yang, Y. J., Hill, A. D., Lun, M., Maynard, T., Gonzalez, D., Kim, S., Ye, P., et al. (2011). The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 69, 893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., & Vaessin, H. (2000). Pan-neural prospero terminates cell proliferation during Drosophila neurogenesis. Genes & Development, 14, 147–151.

    CAS  Google Scholar 

  • Li, X., Chen, Z. and Desplan, C. (2013). Temporal patterning of neural progenitors in drosophila. In Current Topics in Developmental Biology, pp. 69–96. Academic press.

    Google Scholar 

  • Li, S., Wang, H., & Groth, C. (2014). Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation. Bioscience Reports, 34, 401–414.

    Google Scholar 

  • Li, X., Xie, Y., & Zhu, S. (2016). Notch maintains Drosophila type II neuroblasts by suppressing expression of the fez transcription factor earmuff. Development, 143, 2511–2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Koe, C. T., Tay, S. T., Tan, A. L. K., Zhang, S., Zhang, Y., Tan, P., Sung, W. K., & Wang, H. (2017). An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins. Nature Communications, 8.

    Google Scholar 

  • Lin, N., Zhang, C., Pang, J., & Zhou, L. (2009). By design or by chance: Cell death during Drosophila embryogenesis. Apoptosis, 14, 935–942.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Spéder, P., & Brand, A. H. (2014). Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes. Obesity and Metabolism, 16, 16–20.

    Article  CAS  Google Scholar 

  • Liu, Z., Fu, C.-C., Liu, L.-Y., Sugino, K., Lee, T., Lee, L. P., Yang, C.-P., & Yao, X. (2015). Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science (80-.), 350, 317–320.

    Article  CAS  Google Scholar 

  • Lohmann, I., McGinnis, N., Bodmer, M., & McGinnis, W. (2002). The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell, 110, 457–466.

    Article  CAS  PubMed  Google Scholar 

  • Loyer, N. and Januschke, J. (2017). Drosophila neural stem cells are polarized by their daughter cells. bioRxiv 182592.

    Google Scholar 

  • Lu, B., Roegiers, F., Jan, L. Y., & Jan, Y. N. (2001). Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature, 409, 522–525.

    Article  CAS  PubMed  Google Scholar 

  • Luer, K., Rickert, C., Rogulja-Ortmann, A., Seibert, J., & Technau, G. M. (2006). Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development, 134, 105–116.

    Google Scholar 

  • Lui, J. H. H., Hansen, D. V. V. and Kriegstein, A. R. R. (2011). Development and evolution of the human neocortex.

    Google Scholar 

  • Lymphomagenesis, L. K., Slupianek, A., Nieborowska-skorska, M., Hoser, G., Morrione, A., Majewski, M., Xue, L., Morris, S. W., Wasik, M. A., & Skorski, T. (2001). Role of phosphatidylinositol 3-kinase-Akt pathway in Nucleophosmin/anaplastic. Cancer Research, 2194–2199.

    Google Scholar 

  • Ma, D. K., Bonaguidi, M. A., Ming, G. L., & Song, H. (2009). Adult neural stem cells in the mammalian central nervous system. Cell Research, 19, 672–682.

    Article  CAS  PubMed  Google Scholar 

  • Mairet-Coello, G., Tury, A., & DiCicco-Bloom, E. (2009). Insulin-like growth Factor-1 promotes G1/S cell cycle progression through bidirectional regulation of Cyclins and Cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. The Journal of Neuroscience, 29, 775–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malatesta, P., Hartfuss, E. and Götz, M. (2000). Radial glial cells as neuronal precursors.

    Google Scholar 

  • Marchetti, G., Reichardt, I., Knoblich, J. A., & Besse, F. (2014). The TRIM-NHL protein brat promotes axon maintenance by repressing src64B expression. The Journal of Neuroscience, 34, 13855–13864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marin, E. C., Yang, C.-P., Apenteng, B. A., Lee, T., Huang, Y., Kao, C.-F., Truman, J. W., Lin, S., & O’Connor, M. B. (2013). Extremes of lineage plasticity in the Drosophila brain. Current Biology, 23, 1908–1913.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, O. J., & Brand, A. H. (2017). Chromatin state changes during neural development revealed by in vivo cell-type specific profiling. Nature Communications, 8, 2271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin-Belmonte, F., & Perez-Moreno, M. (2012). Epithelial cell polarity, stem cells and cancer. Nature Reviews. Cancer, 12, 23–38.

    Article  CAS  Google Scholar 

  • Mason, H. A., Rakowiecki, S. M., Gridley, T., & Fishell, G. (2006). Loss of notch activity in the developing central nervous system leads to increased cell death. Developmental Neuroscience, 28, 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, F., Ohshiro, T., Ikeshima-Kataoka, H., & Izumi, H. (1998). Miranda localizes Staufen and Prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development, 125, 4089–4098.

    CAS  PubMed  Google Scholar 

  • Mattar, P., Ericson, J., Blackshaw, S., & Cayouette, M. (2015). A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron, 85, 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurange, C., Cheng, L., & Gould, A. P. (2008). Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell, 133, 891–902.

    Article  CAS  PubMed  Google Scholar 

  • McDermott, S. M., Meignin, C., Rappsilber, J., & Davis, I. (2012). Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification. Biology Open, 1, 488–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mettler, U. (2006). Timing of identity: Spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by seven-up and Prospero. Development, 133, 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Ming, G.-l., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70, 687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira, H., Consiglio, A., Colak, D., San Emeterio, J., Fariñas, I., Jessberger, S., Andreu, Z., Marqués-Torrejón, M. Á., Gage, F. H., Suh, H., et al. (2010). Signaling through BMPR-IA regulates quiescence and Long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell, 7, 78–89.

    Article  CAS  PubMed  Google Scholar 

  • Miyares, R. L. and Lee, T. (2019). Temporal control of Drosophila central nervous system development. Elsevier Current Trends.

    Google Scholar 

  • Miyata, T., Kawaguchi, A., Okano, H., & Ogawa, M. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron, 31, 727–741.

    Article  CAS  PubMed  Google Scholar 

  • Monedero Cobeta, I., Salmani, B. Y., & Thor, S. (2017). Anterior-posterior gradient in neural stem and daughter cell proliferation governed by spatial and temporal Hox control. Current Biology, 27, 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  • Morshead, C. M., Reynolds, B. A., Craig, C. G., McBurney, M. W., Staines, W. A., Morassutti, D., Weiss, S., & van der Kooy, D. (1994). Neural stem cells in the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron, 13, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  • Munro, T. P., Kwon, S., Schnapp, B. J., & St Johnston, D. (2006). A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP. The Journal of Cell Biology, 172, 577–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naka, H., Nakamura, S., Shimazaki, T., & Okano, H. (2008). Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nature Neuroscience, 11, 1014–1023.

    Article  CAS  PubMed  Google Scholar 

  • Nériec, N., & Desplan, C. (2016). From the eye to the brain. Development of the Drosophila visual system. Current Topics in Developmental Biology, 116, 247–271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., & Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–720.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, S. C., Martinez-Cerdeño, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Norambuena, A., Wallrabe, H., McMahon, L., Silva, A., Swanson, E., Khan, S. S., Baerthlein, D., Kodis, E., Oddo, S., Mandell, J. W., et al. (2017). mTOR and neuronal cell cycle reentry: How impaired brain insulin signaling promotes Alzheimer’s disease. Alzheimer’s Dement., 13, 152–167.

    Article  Google Scholar 

  • O’Kusky, J. R., Popken, G. J., D’Ercole, A. J., Ng, W., Ye, P., Hodge, R. D., & Zhang, J. (2004). In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. The European Journal of Neuroscience, 19, 2056–2068.

    Article  PubMed  Google Scholar 

  • Odenwald, W. F., Nagle, J., Koizumi, K., Poole, S. J., Stivers, C., & Kambadur, R. (2008). Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes & Development, 12, 246–260.

    Google Scholar 

  • Ohshiro, T., Yagami, T., Zhang, C., & Matsuzaki, F. (2000). Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature, 408, 593–596.

    Article  CAS  PubMed  Google Scholar 

  • Otsuki, L., & Brand, A. H. (2017). The vasculature as a neural stem cell niche. Neurobiology of Disease, 107, 4–14.

    Article  PubMed  Google Scholar 

  • Otsuki, L., & Brand, A. H. (2018). Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science (80-. ), 360, 99–102.

    Article  CAS  Google Scholar 

  • Page, D. T., & Olofsson, B. (2008). Multiple roles for apoptosis facilitating condensation of the Drosophila ventral nerve cord. Genesis, 46, 61–68.

    Article  PubMed  Google Scholar 

  • Pahl, M. C., Doyle, S. E., & Siegrist, S. E. (2019). E93 integrates neuroblast intrinsic state with developmental time to terminate MB neurogenesis via autophagy. Current Biology, 29, 1–13.

    Article  CAS  Google Scholar 

  • Papers, J. B. C., Doi, M., & Kageyama, R. (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain ∗ Toshiyuki Ohtsuka ‡§, Masami Sakamoto ‡, Franc. Journal of Biology Chemistry, 276, 30467–30474.

    Article  Google Scholar 

  • Park, Y., Rangel, C., Reynolds, M. M., Caldwell, M. C., Johns, M., Nayak, M., Welsh, C. J. R., McDermott, S., Datta, S., Rangel, C., et al. (2003). Drosophila Perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Developmental Biology, 253, 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, B. J., & Doe, C. Q. (2003). Regulation of neuroblast competence in Drosophila. Nature, 425, 624–628.

    Article  CAS  PubMed  Google Scholar 

  • Peng, C. Y., Manning, L., Albertson, R., & Doe, C. Q. (2000). The tumour-suppresor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature, 408, 596–600.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Deng, X., Li, X., O’Hara, K., Zhu, S., Hou, Y., Chen, L., Xie, Y., & Urso, A. (2016). The Ets protein pointed prevents both premature differentiation and dedifferentiation of Drosophila intermediate neural progenitors. Development, 143, 3109–3118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters, M. A. (2010). Editorial: Complexity and knowledge systems. Educational Philosophy and Theory, 40, 1–3.

    Article  Google Scholar 

  • Peterson, C., Carney, G. E., Taylor, B. J., & White, K. (2002). Reaper is required for neuroblast apoptosis during Drosophila development. Development, 129, 1467–1476.

    CAS  PubMed  Google Scholar 

  • Petronczki, M., & Knoblich, J. A. (2001). DmPAR-6 directs epithelial polarity and asymetric cell division of neuroblasts in Drosophila. Nature Cell Biology, 3, 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Pierfelice, T., Alberi, L., & Gaiano, N. (2011). Notch in the vertebrate nervous system: An old dog with new tricks. Neuron, 69, 840–855.

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Teixeira, F., Konstantinides, N., & Desplan, C. (2016). Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Letters, 590, 2435–2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postiglione, M. P., Jüschke, C., Xie, Y., Haas, G. A., Charalambous, C., & Knoblich, J. A. (2011). Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron, 72, 269–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokop, A., Bray, S., Harrison, E., & Technau, G. M. (1998). Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mechanisms of Development, 74, 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, A., & Camargo, F. D. (2012). The hippo signaling pathway and stem cell biology. Trends in Cell Biology, 22, 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath, U., Wang, D., Ding, Y., Xu, Y. Z., Qi, H., Blacketer, M. J., Girton, J., Johansen, J., & Johansen, K. M. (2004). Chromator, a novel and essential chromodomain protein interacts directly with the putative spindle matrix protein skeletor. Journal of Cellular Biochemistry, 93, 1033–1047.

    Article  CAS  PubMed  Google Scholar 

  • Rebollo, E., Roldan, M., & Gonzalez, C. (2009). Spindle alignment is achieved without rotation after the first cell cycle in Drosophila embryonic neuroblasts. Development.

    Google Scholar 

  • Reichardt, I., Bonnay, F., Steinmann, V., Loedige, I., Burkard, T. R., Meister, G., & Knoblich, J. A. (2018). The tumor suppressor brat controls neuronal stem cell lineages by inhibiting deadpan and Zelda. EMBO Reports, 19, 102–117.

    Article  CAS  PubMed  Google Scholar 

  • Ren, Q., Yang, C. P., Liu, Z., Sugino, K., Mok, K., He, Y., Ito, M., Nern, A., Otsuna, H., & Lee, T. (2017). Stem cell-intrinsic, seven-up-triggered temporal factor gradients diversify intermediate neural progenitors. Current Biology, 27, 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, H. E., & Portela, M. (2017). Tissue growth and tumorigenesis in Drosophila: Cell polarity and the hippo pathway. Current Opinion in Cell Biology, 48, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Riebli, N., Viktorin, G., & Reichert, H. (2013). Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila. Neural Development, 8, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riquelme, P. A., Drapeau, E., & Doetsch, F. (2008). Brain micro-ecologies: Neural stem cell niches in the adult mammalian brain. Philosophical Transactions of the Royal Society B, 363, 123–137.

    Article  Google Scholar 

  • Rivarola, M. A., Marino, R., Bailez, M., Belgorosky, A., Ciaccio, M., Warman, D. M., Gil, S., Guercio, G., Berensztein, E., & Juanes, M. (2014). Three novel IGF1R mutations in microcephalic patients with prenatal and postnatal growth impairment. Clinical Endocrinology, 82, 704–711.

    PubMed  Google Scholar 

  • Rogers, B. T., Kaufman, T., Hamilton, B., Holtzman, S. L., Miller, D. F. B., & Kalkbrenner, A. (2002). Cross-regulation of Hox genes in the Drosophila melanogaster embryo. Mechanisms of Development, 102, 3–16.

    Google Scholar 

  • Rolland, V., Kinsey, K. A., Emery, G., Betschinger, J., Bowman, S. K., & Knoblich, J. A. (2008). The tumor suppressors brat and numb regulate transit-amplifying neuroblast lineages in Drosophila. Developmental Cell, 14, 535–546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosoklija, G. B., Boldrini, M., Arango, V., Stankov, A., Tartt, A. N., Pavlova, I., Poposka, V., Fulmore, C. A., Simeon, L. R., Hen, R., et al. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589-599.e5.

    Google Scholar 

  • Ryoo, H. D., & Baehrecke, E. H. (2010). Distinct death mechanisms in Drosophila development. Current Opinion in Cell Biology, 22, 889–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, J. R., Hong, C. J., Kim, J. Y., Kim, E.-K., Sun, W., & Yu, S.-W. (2016). Control of adult neurogenesis by programmed cell death in the mammalian brain. Molecular Brain, 9, 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandler, J. E., & Stathopoulos, A. (2016). Stepwise progression of embryonic patterning. Trends in Genetics, 32, 432–443.

    Article  CAS  PubMed  Google Scholar 

  • Sato, M., Yasugi, T., & Trush, O. (2019). Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neuroscience Research, 138, 49–58.

    Article  PubMed  Google Scholar 

  • Schaefer, M., Shevchenko, A., Shevchenko, A., & Knoblich, J. A. (2000). A protein complex containing inscuteable and the Gα-binding protein pins orients asymmetric cell divisions in Drosophila. Current Biology, 10, 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer, M., Petronczki, M., Dorner, D., Forte, M., Knoblich, J. A., Forte, M., Dorner, D., & Petronczki, M. (2004). Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell, 107, 183–194.

    Article  Google Scholar 

  • Schmid, A., Chiba, A., & Doe, C. Q. (1999). Clonal analysis of Drosophila embryonic neuroblasts: Neural cell types, axon projections and muscle targets. Development, 126, 4653–4689.

    CAS  PubMed  Google Scholar 

  • Schmidt, H., Rickert, C., Bossing, T., Vef, O., Urban, J., Technau, G. M., Udolph, G., Doe, C. Q., Technau, G. M., Schmidt, H., et al. (1997a). The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Developmental Biology, 189, 186–204.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, H., Rickert, C., Bossing, T., Vef, O., Urban, J., & Technau, G. M. (1997b). The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Developmental Biology, 189, 186–204.

    Article  CAS  PubMed  Google Scholar 

  • Schober, M., Schaefer, M., & Knoblich, J. A. (1999). Bazooka recruits inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature, 402, 548–551.

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld, T. J., & Cameron, H. A. (2015). Adult neurogenesis and mental illness. Neuropsychopharmacology, 40, 113–128.

    Article  PubMed  Google Scholar 

  • Schuldt, A. J., Adams, J. H. J., Davidson, C. M., Micklem, D. R., Haseloff, J., St. Johnston, D., & Brand, A. H. (1998). Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes & Development, 12, 1847–1857.

    Article  CAS  Google Scholar 

  • Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates MicroRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136, 913–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen, S. Q., Chanchani, S., Southall, T. D., & Doe, C. Q. (2019). Neuroblast-specific chromatin landscapes allows the integration of spatial and temporal cues during Drosophila neurogenesis. eLife, 8.

    Google Scholar 

  • Shen, C. P., Jan, L. Y., & Jan, Y. N. (1997). Miranda is required for the asymmetric localization of prospero during mitosis in Drosophila. Cell, 90, 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Q., Wang, Y., Dimos, J. T., Fasano, C. A., Phoenix, T. N., Lemischka, I. R., Ivanova, N. B., Stifani, S., Morrisey, E. E., & Temple, S. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neuroscience, 9, 743–751.

    Article  CAS  PubMed  Google Scholar 

  • Siegrist, S. E., Haque, N. S., Chen, C. H., Hay, B. A., & Hariharan, I. K. (2010). Inactivation of both foxo and reaper promotes Long-term adult neurogenesis in Drosophila. Current Biology, 20, 643–648.

    Article  CAS  PubMed  Google Scholar 

  • Siller, K. H., Cabernard, C., & Doe, C. Q. (2006). The NuMA-related mud protein binds pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biology, 8, 594–600.

    Article  CAS  PubMed  Google Scholar 

  • Sipe, C. W., & Siegrist, S. E. (2017). Eyeless uncouples mushroom body neuroblast proliferation from dietary amino acids in Drosophila. eLife, 6.

    Google Scholar 

  • Skeath, J. B. (1998). The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal-ventral axis of the Drosophila embryo. Development, 125, 3301–3312.

    CAS  PubMed  Google Scholar 

  • Skeath, J. B., & Carroll, S. B. (1992). Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development, 114, 939–946.

    CAS  PubMed  Google Scholar 

  • Skeath, J. B., & Carroll, S. B. (1994). The achaete-scute complex: Generation of cellular pattern and fate within the Drosophila nervous system. The FASEB Journal, 8, 714–721.

    Article  CAS  PubMed  Google Scholar 

  • Skeath, J. B., & Thor, S. (2003). Genetic control of Drosophila nerve cord development. Current Opinion in Neurobiology, 13, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Sousa-Nunes, R., & Somers, W. G. (2013). Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Advances in Experimental Medicine and Biology, 79–102.

    Google Scholar 

  • Sousa-Nunes, R., Yee, L. L., & Gould, A. P. (2011). Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature, 471, 508–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spana, E. P., & Doe, C. Q. (1995). The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development, 121, 3187–3195.

    CAS  PubMed  Google Scholar 

  • Spana, E. P., & Doe, C. Q. (1996). Numb antagonizes notch signaling to specify sibling neuron cell fates. Neuron, 17, 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Spéder, P., & Brand, A. H. (2018). Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. eLife, 7.

    Google Scholar 

  • Stratmann, J., Gabilondo, H., Benito-Sipos, J., & Thor, S. (2016). Neuronal cell fate diversification controlled by sub-temporal action of Kruppel. eLife, 5.

    Google Scholar 

  • Struhl, G., Fitzgerald, K., & Greenwald, I. (1993). Intrinsic activity of the lin-12 and notch intracellular domains in vivo. Cell, 74, 331–345.

    Article  CAS  PubMed  Google Scholar 

  • Syed, M. H., Mark, B., & Doe, C. Q. (2017a). Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. eLife, 6.

    Google Scholar 

  • Syed, M. H., Mark, B., & Doe, C. Q. (2017b). Playing well with others: Extrinsic cues regulate neural progenitor temporal identity to generate neuronal diversity. Trends in Genetics, 33, 933–942.

    Article  CAS  PubMed  Google Scholar 

  • Tan, S. S., Kalloniatis, M., Sturm, K., Tam, P. P. L., Reese, B. E., & Faulkner-Jones, B. (1998). Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron, 21, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Y., Yamada-Mabuchi, M., Arya, R., St Pierre, S., Tang, W., Tosa, M., Brachmann, C., & White, K. (2011). Coordinated expression of cell death genes regulates neuroblast apoptosis. Development, 138, 2197–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee, W.-W., & Reinberg, D. (2014). Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development, 141, 2376–2390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temple, S. (2001). The development of neural stem cells. Nature, 414, 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Tepass, U., Theres, C., & Knust, E. (1990). Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell, 61, 787–799.

    Article  CAS  PubMed  Google Scholar 

  • Tio, M., Udolph, G., Yang, X., & Chia, W. (2001). cdc2 links the Drosophila cell cycle and asymmetric division machineries. Nature, 409, 1063–1067.

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga, A., Dang, L., Gaiano, N., Yoon, K., & Mizutani, K. (2007). Differential notch signalling distinguishes neural stem cells from intermediate progenitors. Nature, 449, 351–355.

    Article  PubMed  CAS  Google Scholar 

  • Tran, K. D., & Doe, C. Q. (2008). Pdm and Castor close successive temporal identity windows in the NB3-1 lineage. Development, 135, 3491–3499.

    Article  CAS  PubMed  Google Scholar 

  • Truman, J. W., & Bate, M. (1988). Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Developmental Biology, 125, 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Truman, J. W., Thorn, R. S., & Robinow, S. (1992). Programmed neuronal death in insect development. Journal of Neurobiology, 23, 1295–1311.

    Article  CAS  PubMed  Google Scholar 

  • Trunova, S., Shearn, A., Frydman, H., Hersperger, E., Goodliffe, J., & Beaucher, M. (2006). Drosophila brain tumor metastases express both neuronal and glial cell type markers. Developmental Biology, 301, 287–297.

    PubMed  Google Scholar 

  • Tsuji, T., Hasegawa, E., & Isshiki, T. (2008). Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development, 135, 3859–3869.

    Article  CAS  PubMed  Google Scholar 

  • Vaessin, H., Younger-Shepherd, S., Jan, L. Y., Bier, E., & Jan, Y. N. (2007). Deadpan, an essential pan-neural gene in Drosophila, encodes a helix-loop-helix protein similar to the hairy gene product. Genes & Development, 6, 2137–2151.

    Google Scholar 

  • Vecchione, A., Croce, C. M. and Baldassarre, G. (2007). Fez1/Lzts1 a new mitotic regulator implicated in cancer development. Cell Div. 2,.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viktorin, G., Riebli, N., Popkova, A., Giangrande, A., & Reichert, H. (2011). Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Developmental Biology, 356, 553–565.

    Article  CAS  PubMed  Google Scholar 

  • Voigt, A., Pflanz, R., Schäfer, U., & Jäckle, H. (2002). Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Developmental Dynamics, 224, 403–412.

    Article  CAS  PubMed  Google Scholar 

  • Von Ohlen, T., & Doe, C. Q. (2000). Convergence of dorsal, Dpp, and Egfr signaling pathways subdivides the Drosophila Neuroectoderm into three dorsal-ventral columns. Developmental Biology, 224, 362–372.

    Article  CAS  Google Scholar 

  • Walsh, C., & Cepko, C. L. (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science, 255, 434–440.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, K. T., & Doe, C. Q. (2017). Drosophila embryonic type II neuroblasts: Origin, temporal patterning, and contribution to the adult central complex. Development, 144, 4552–4562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., & Chia, W. (2005). Drosophila neural progenitor polarity and asymmetric division. Biology of the Cell, 97, 63–74.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Somers, G. W., Bashirullah, A., Heberlein, U., Yu, F., & Chia, W. (2006). Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes & Development, 20, 3453–3463.

    Article  CAS  Google Scholar 

  • Weng, M., Golden, K. L., & Lee, C. Y. (2010). dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Developmental Cell, 18, 126–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng, M., Komori, H., & Lee, C. Y. (2012). Identification of neural stem cells in the drosophila larval brain. Methods in Molecular Biology, 879, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Weynans, K., Berger, C., Ding, R., Bossing, T., & Barros, C. S. (2016). The hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nature Communications, 7, 10510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wheeler, W. M. (1891). Neuroblasts in the arthropod embryo. Journal of Morphology, 4, 337–343.

    Article  Google Scholar 

  • Wheeler, W. M. (1893). A contribution to insect embryology. Journal of Morphology, 8, 1–161.

    Article  Google Scholar 

  • White, K., & Steller, H. (1995). The control of apoptosis in Drosophila. Trends in Cell Biology, 5, 74–78.

    Article  CAS  PubMed  Google Scholar 

  • White, K., Tahaoglu, E., & Steller, H. (1996). Cell killing by the Drosophila gene reaper. Science (80-. ), 271, 805–807.

    Article  CAS  Google Scholar 

  • Wodarz, A., & Huttner, W. B. (2003). Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mechanisms of Development, 120, 1297–1309.

    Article  CAS  PubMed  Google Scholar 

  • Wodarz, A., Ramrath, A., Grimm, A., & Knust, E. (2000). Drosophila atypical protein kinase C associates with bazooka and controls polarity of epithelia and neuroblasts. The Journal of Cell Biology, 150, 1361–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Q., Komori, H., & Lee, C.-Y. (2012). Klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development, 139, 2670–2680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghmaeian Salmani, B., Thor, S., Starkenberg, A., Bauer, S., Curt, J. R., Monedero Cobeta, I., & Rakar, J. (2018). Evolutionarily conserved anterior expansion of the central nervous system promoted by a common PcG-Hox program. Development, 145, dev160747.

    Article  PubMed  Google Scholar 

  • Yalonetskaya, A., Mondragon, A., Elguero, J., & McCall, K. (2018). I spy in the developing Fly a multitude of ways to die. Journal of Development Biology, 6, 26.

    Article  CAS  Google Scholar 

  • Yamaguchi, Y., & Miura, M. (2015). Programmed cell death in neurodevelopment. Developmental Cell, 32, 478–490.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, Y. M., Yuan, H., Cheng, J., & Hunt, A. J. (2010). Polarity in stem cell division: Asymmetric stesm cell division in tissue homeostasis. Cold Spring Harbor Perspectives in Biology, 2, a001313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Klein, R., Tian, X., Cheng, H. T., Kopan, R., & Shen, J. (2004). Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Developmental Biology, 269, 81–94.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. S., Awasaki, T., Yu, H.-H., He, Y., Ding, P., Kao, J.-C., & Lee, T. (2013). Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex. The Journal of Comparative Neurology, 521, 2645–2662.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasugi, T., & Nishimura, T. (2016). Temporal regulation of the generation of neuronal diversity in Drosophila. Development, Growth & Differentiation, 58, 73–87.

    Article  Google Scholar 

  • Yu, H.-H., Awasaki, T., Schroeder, M. D. D., Long, F., Yang, J. S. S., He, Y., Ding, P., Kao, J.-C., Wu, G. Y.-Y. Y.-Y., Peng, H., et al. (2013). Clonal development and Organization of the Adult Drosophila Central Brain. Current Biology, 23, 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Lin, N., Carroll, P. M., Chan, G., Guan, B., Xiao, H., Yao, B., Wu, S. S., & Zhou, L. (2008). Epigenetic blocking of an enhancer region controls irradiation-induced Proapoptotic gene expression in Drosophila embryos. Developmental Cell, 14, 481–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, G., Skeath, J. B., & Chia, W. (2002). The sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm. Development, 129, 1165–1174.

    CAS  PubMed  Google Scholar 

  • Zusman, S. B., Sweeton, D., & Wieschaus, E. F. (1988). Short gastrulation, a mutation causing delays in stage-specific cell shape changes during gastrulation in Drosophila melanogaster. Developmental Biology, 129, 417–427.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Vani Brahmachari for discussions and suggestions and Dr. Rekha Arya for the innovative idea in preparing images. For funding, we acknowledge the DBT-Ramalingaswami Fellowship (BT/RLF/Re-Entry/30/2015) to R.A. and the D.S. Kothari Fellowship to A.V.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A., Santhosh, M.E., Arya, R. (2019). Drosophila Neural Stem Cells: A Primer for Understanding Mammalian Neural Development and Disease. In: Mutsuddi, M., Mukherjee, A. (eds) Insights into Human Neurodegeneration: Lessons Learnt from Drosophila. Springer, Singapore. https://doi.org/10.1007/978-981-13-2218-1_4

Download citation

Publish with us

Policies and ethics