Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 288 Accesses

Abstract

This doctoral work culminated in a circuit design capable of detecting bi-molecular proximity events, which we named “split proximity circuit (SPC)”. The circuit assembles dynamically on the target recognition sites in a self-contained manner to execute localized strand displacement. A recurring theme in this thesis was to minimize circuit leakages and a major contribution of this thesis was the development of several key counter-leakage strategies which were demonstrated in two concepts of association toehold and hybridization chain reaction. These strategies should be useful for designing DNA circuits in general and particularly as a starting point for researchers outside the DNA circuitry field. In terms of assay development, the greatest advantages of the SPC are its operation simplicity and plug-and-play versatility when compared to existing detection technologies. Looking forward, the functionality of SPC can be expanded by modifying individual module, e.g. detection of live cells, using secondary antibody as the recognition moiety and incorporating a functional downstream output. Other scientific directions to be explored include the self-contained logic gate design on cell surfaces and enzymatic production of “defect-free” oligonucleotide strands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiessling, L.L., Gestwicki, J.E., Strong, L.E.: Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr. Opin. Chem. Biol. 4, 696 (2000)

    Article  CAS  Google Scholar 

  2. Spengler, M., Adler, M., Niemeyer, C.M.: Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-pcr and other emerging techniques. Analyst 140, 6175 (2015)

    Article  CAS  Google Scholar 

  3. Lagerstrom, M.C., Schioth, H.B.: Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339 (2008)

    Article  Google Scholar 

  4. Arkin, M.R., Wells, J.A.: Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301 (2004)

    Article  CAS  Google Scholar 

  5. Vidal, M., Cusick, M.E., Barabási, A.-L.: Interactome networks and human disease. Cell 144, 986 (2011)

    Article  CAS  Google Scholar 

  6. Braun, P.: Interactome mapping for analysis of complex phenotypes: insights from benchmarking binary interaction assays. Proteomics 12, 1499 (2012)

    Article  CAS  Google Scholar 

  7. Weitsman, G., Barber, P.R., Nguyen, L.K., Lawler, K., Patel, G., Woodman, N., Kelleher, M.T., Pinder, S.E., Rowley, M., Ellis, P.A., Purushotham, A.D., Coolen, A.C., Kholodenko, B.N., Vojnovic, B., Gillett, C., Ng, T.: HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget 7, 51012 (2016)

    Article  Google Scholar 

  8. Balic, M., Williams, A., Lin, H., Datar, R., Cote, R.J.: Circulating tumor cells: from bench to bedside. Annu. Rev. Med. 64, 31 (2013)

    Article  CAS  Google Scholar 

  9. Crowley, E., Di Nicolantonio, F., Loupakis, F., Bardelli, A.: Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472 (2013)

    Article  CAS  Google Scholar 

  10. Karkare, S., Bhatnagar, D.: Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl. Microbiol. Biotechnol. 71, 575 (2006)

    Article  CAS  Google Scholar 

  11. Summerton, J.E.: Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules, p.89. Springer, Boston, MA, USA (2006)

    Google Scholar 

  12. Soderberg, O., Gullberg, M., Jarvius, M., Ridderstrale, K., Leuchowius, K.-J., Jarvius, J., Wester, K., Hydbring, P., Bahram, F., Larsson, L.-G., Landegren, U.: Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995 (2006)

    Article  Google Scholar 

  13. Hoogenboom, H.R.: Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105 (2005)

    Article  CAS  Google Scholar 

  14. Douglas, S.M., Bachelet, I., Church, G.M.: A Logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831 (2012)

    Article  CAS  Google Scholar 

  15. Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler Jr., V.P., Rudchenko, S., Stojanovic, M.N.: Autonomous molecular cascades for evaluation of cell surfaces. Nat. Nanotechnol. 8, 580 (2013)

    Article  CAS  Google Scholar 

  16. Schaus, T.E., Yin, P.: Molecular computing. in situ computation of cell identity. Nat. Nanotechnol. 8, 546 (2013)

    Article  CAS  Google Scholar 

  17. Cooper, G.M.: In The Cell: a Molecular Approach, 2nd edn. Sinauer Associates, Sunderland (MA) (2000)

    Google Scholar 

  18. Jung, C., Allen, P.B., Ellington, A.D.A.: Stochastic DNA walker that traverses a microparticle surface. Nat. Nanotechnol. 11, 157 (2016)

    Google Scholar 

  19. Ikbal, J., Lim, G.S., Gao, Z.: The hybridization chain reaction in the development of ultrasensitive nucleic acid assays. TrAC Trends Anal. Chem. 64, 86 (2015)

    Article  CAS  Google Scholar 

  20. Ali, M.M., Li, F., Zhang, Z., Zhang, K., Kang, D.-K., Ankrum, J.A., Le, X.C., Zhao, W.: Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43, 3324 (2014)

    Article  CAS  Google Scholar 

  21. Yan, L., Zhou, J., Zheng, Y., Gamson, A.S., Roembke, B.T., Nakayama, S., Sintim, H.O.: Isothermal amplified detection of DNA and RNA. Mol. BioSyst. 10, 970 (2014)

    Article  CAS  Google Scholar 

  22. Ducani, C., Kaul, C., Moche, M., Shih, W.M., Hogberg, B.: Enzymatic production of ‘monoclonal stoichiometric’ single-stranded dna oligonucleotides. Nat. Methods 10, 647 (2013)

    Article  CAS  Google Scholar 

  23. Chen, Y.-J., Rao, S.D., Seelig, G.: Plasmid-derived DNA Strand displacement gates for implementing chemical reaction networks. JoVE. e53087 (2015)

    Google Scholar 

  24. Elbaz, J., Yin, P., Voigt, C.A.: Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nat. Commun. 7, 11179 (2016)

    Article  CAS  Google Scholar 

  25. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103 (2011)

    Article  CAS  Google Scholar 

  26. Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763 (2011)

    Article  CAS  Google Scholar 

  27. Ezziane, Z.: DNA computing: applications and challenges. Nanotechnology 17, R27 (2006)

    Article  CAS  Google Scholar 

  28. Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W., Bathe, M.: Designer nanoscale DNA assemblies programmed from the top down. Science (2016)

    Google Scholar 

  29. Hahn, J., Wickham, S.F.J., Shih, W.M., Perrault, S.D.: Addressing the instability of DNA Nanostructures in tissue culture. ACS Nano 8, 8765 (2014)

    Article  CAS  Google Scholar 

  30. Amir, Y., Ben-Ishay, E., Levner, D., Ittah, S., Abu-Horowitz, A., Bachelet, I.: Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353 (2014)

    Article  CAS  Google Scholar 

  31. Chen, Y.-J., Groves, B., Muscat, R.A., Seelig, G.: DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748 (2015)

    Article  CAS  Google Scholar 

  32. Green, A.A., Silver, P.A., Collins, J.J., Yin, P.: Toehold switches: De-Novo-designed regulators of gene expression. Cell. 159, 925 (2014)

    Google Scholar 

  33. Pardee, K., Green, A.A., Ferrante, T., Cameron, D.E., DaleyKeyser, A., Yin, P., Collins, J.J.: Based synthetic gene networks. Cell 159(4), 940–954 (2014)

    Article  CAS  Google Scholar 

  34. Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., Ferrante, T., Ma, D., Donghia, N., Fan, M., Daringer, N.M.: Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5), 1255–1266 (2016)

    Article  CAS  Google Scholar 

  35. Lakin, M.R., Stefanovic, D.: Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5, 885 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan Shan, A. (2018). Conclusion and Future Outlooks. In: Engineering a Robust DNA Circuit for the Direct Detection of Biomolecular Interactions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-2188-7_9

Download citation

Publish with us

Policies and ethics