Skip to main content

Chaos-Based Neural Network Optimization Approach

  • Chapter
  • First Online:
Electronic Nose: Algorithmic Challenges
  • 617 Accesses

Abstract

E-nose combined with a pattern recognition module can be used for estimating gases concentration. This chapter introduces the concentration estimations of indoor contaminants using chaos-based optimization artificial neural network integrated into our E-nose instrument. Back-propagation neural network (BPNN) has been the common pattern recognition algorithm for E-nose; however, it has local optimal flaw. This chapter presents a novel chaotic sequence optimization BPNN method. Experimental results demonstrate the superiority and efficiency of the portable E-nose instrument integrated into chaos-based artificial neural network optimization algorithms in real-time monitoring of air quality in dwellings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.P. Jones, Indoor air quality and health. Atmos. Environ. 33, 4535–4564 (1999)

    Article  Google Scholar 

  2. S.C. Lee, M. Chang, Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41, 109–113 (2000)

    Article  Google Scholar 

  3. S. De Vito, E. Massera, M. Piga, L. Martinotto, G. Di Francia, On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B 129, 750–757 (2008)

    Article  Google Scholar 

  4. H. Huang, F. Haghighat, Modelling of volatile organic compounds emission from dry building materias. Build. Environ. 37, 1349–1360 (2002)

    Article  Google Scholar 

  5. H.G. Schuster, Deterministic chaos: an introduction (Physick-Verlag GmnH, Weinheim, Federal Republic of Germany, 1988)

    MATH  Google Scholar 

  6. B. Alatas, E. Akin, A. Bedri Ozer, Chaos embedded particle swarm optimization algorithms, Chaos. Solitons Fractals 40, 1715–1734 (2009)

    Article  MathSciNet  Google Scholar 

  7. Q. Wu, A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Syst. Appl. 37, 2388–2394 (2010)

    Article  Google Scholar 

  8. Q. Wu, The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine. Expert Syst. Appl. 37, 1776–1783 (2010)

    Article  Google Scholar 

  9. X. Tang, L. Zhuang, C. Jiang, Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization. Expert Syst. Appl. 36, 11853–11857 (2009)

    Article  Google Scholar 

  10. C. Zhao, X. Sun, S. Sun, J. Ting, Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine. Expert Syst. Appl. 38, 9908–9912 (2011)

    Article  Google Scholar 

  11. X. Tang, L. Zhuang, J. Cai, C. Li, Multi-fault classification based on support vector machine trained by chaos particle swarm optimization. Knowl.-Based Syst. 23, 486–490 (2010)

    Article  Google Scholar 

  12. X.Q. Zuo, Y.S. Fan, A chaos search immune algorithm with its application to neuro-fuzzy controller design. Chaos, Solitons Fractals 30, 94–109 (2006)

    Article  MathSciNet  Google Scholar 

  13. Z. Guo, S. Wang, J. Zhuang, A novel immune evolutionary algorithm incorporating chaos optimization. Pattern Recogn. Lett. 27, 2–8 (2006)

    Article  Google Scholar 

  14. M.S. Simon, D. James, Z. Ali, Data analysis for electronic nose systems. Microchim. Acta 156, 183–207 (2007)

    Google Scholar 

  15. J.E. Haugen, K. Kvaal, Electronic nose and artificial neural network. Meat Sci. 49, S273–S286 (1998)

    Article  Google Scholar 

  16. L. Carmel, N. Sever, D. Lancet, D. Harel, An eNose algorithm for identifying chemicals and determining their concentration. Sens. Actuators B 93, 77–83 (2003)

    Article  Google Scholar 

  17. E.G. Breijo, J. Atkinson, L.S. Sanchez, A comparison study of pattern recognition algorithms implemented on a microcontroller for use in a electronic tongue for monitoring drinking waters. Sens. Actuators A 172, 570–582 (2011)

    Article  Google Scholar 

  18. L.G. Sanchez, J. Soto, M.R. Martinez, A novel humid electronic nose combined with an electronic tongue for assessing deterioration of wine. Sens. Actuators A 171, 152–158 (2011)

    Article  Google Scholar 

  19. N. Paulsson, E. Larsson, F. Winquist, Extraction and selection of parameters for evaluation of breath alcohol measurement with an electronic nose. Sens. Actuators A 84, 187–197 (2000)

    Article  Google Scholar 

  20. L. Zhang, F. Tian, C. Kadri, G. Pei, H. Li, L. Pan, Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose. Sens. Actuators B 160, 760–770 (2011)

    Article  Google Scholar 

  21. M. Gori, A. Tesi, On the problem of local minima in back-propagation. IEEE Trans. Pattern Anal. Mach. Intell. 14(1), 76–86 (1992)

    Article  Google Scholar 

  22. J. Kennedy, R.C. Eberhart, Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)

    Article  Google Scholar 

  23. L. Zhang, F. Tian, H. Nie, L. Dang, G. Li, Q. Ye, C. Kadri, Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators B 174, 114–125 (2012)

    Article  Google Scholar 

  24. W. Wu, J. Wang, M.S. Cheng, Z.X. Li, Convergence analysis of online gradient method for BP neural networks. Neural Netw. 24, 91–98 (2011)

    Article  Google Scholar 

  25. J.R. Zhang, J. Zhang, A hybrid particle swarm Optimization back-propagation algorithm for feed-forward neural network training. Appl. Math. Comput. 185, 1026–1037 (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Chaos-Based Neural Network Optimization Approach. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics