Skip to main content

Optical Communications and Modulation Techniques in 5G

  • Chapter
  • First Online:
Smart Grids and Their Communication Systems

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

Abstract

Wired and wireless communication technologies are widely leveraged for bilateral communications between the utility and end user in smart grid environments. With mobile technologies evolving, optical communications are projected to play an essential role in emerging fifth-generation (5G) networks. In this chapter, we first introduce fiber-optic communications and briefly address optical attenuation, dispersion, and nonlinear effects for a variety of modulation devices in present and future fiber-optic transmission and multiplexing technologies. Second, the development of optical wireless communications is introduced, including free-space optical communication and visible-light communication (VLC) systems. Third, waveform designs and modulation techniques in 5G for the smart grid are addressed, including amplitude shift keying (ASK), differential phase shift keying (DPSK), quadrature phase shift keying (QPSK) , multiple quadrature amplitude modulation (MQAM) , polarization shift keying (PolSK), plus other digital modulation and pulse modulation formats, as well as coding technologies. Finally, an overview of the prospects is given for future development, application fields, and socioeconomic influence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Sun, Research on 5G communication technology in the situation of Internet of things. China New Telecommun. 14, 43–44 (2017)

    Google Scholar 

  2. 5G White Paper V2.0, Part D-Alternative Multiple access v1, Future mobile communication forum, “Candidate solution for new multiple access”, 3GPP R1-163383, Busan, Korea, Apr. 11–15, 2016

    Google Scholar 

  3. China Industry Standard, Specifications of engineering design for line of long-haul optical fiber cable trunk transmission system. YD5102-2003, http://t.cn/RQChL9C

  4. M. Hu, A new generation of high speed, large capacity, long distance transmission optical fiber technology. Telecommun. Eng. Technics Stand. 3, 1–5 (2017)

    Google Scholar 

  5. Y. Fang, How to extend your data center multimode optical fiber network. Intell. Build. Smart City 5, 53–57 (2016)

    Google Scholar 

  6. E. Kabalci, Y. Kabalci, A measurement and power line communication system design for renewable smart grids. Measur. Sci. Rev. 13(5), 248–252 (2013)

    Article  Google Scholar 

  7. I. Colak, E. Kabalci, G. Fulli et al., A survey on the contributions of power electronics to smart grid systems. Renew. Sustain. Energy Rev. 47, 562–579 (2015)

    Article  Google Scholar 

  8. H.G. Zhang, Submarine cable transforming the world. City Disaster Reduction 3, 38–42 (2014)

    Google Scholar 

  9. K.C. Kao, G.A. Hockham, Dielectric-fiber surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 113(7), 1151–1158 (1966)

    Article  Google Scholar 

  10. Y. Usui, S. Murai, S. Kurosaki, et al., Method of producing optical waveguide. US, US4410345 (1983)

    Google Scholar 

  11. J.B. Macchesney, P. O’connor, F. Dimarecello, et al., Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion, in Proceedings of the International Congress on Glass (1974)

    Google Scholar 

  12. M. Horiguchi, H. Osanai, Spectral losses of low-OH-content optical fibres. Electron. Lett. 12(12), 310–312 (1976)

    Article  Google Scholar 

  13. S. Tomaru, M. Yasu, M. Kawachi et al., VAD single mode fiber with 0.2 dB/km loss. Electron. Lett. 17(2), 92–93 (1981)

    Article  Google Scholar 

  14. Z.S. Zhao, Past, present and future of optical fiber communications. Acta Optica Sinica 9(31), 99–101 (2011)

    Google Scholar 

  15. R.R. Khrapko, H.B. Matthews Iii, Optical fiber containing alkali metal oxide. US, US7536076 (2009)

    Google Scholar 

  16. L.J. Ball, B.P.M. Baney, D.C. Bookbinder, et al., Low loss optical fiber and method for making same. US, US7524780 (2009)

    Google Scholar 

  17. L.Y. Li, Low loss and ultra-low loss optical fiber review. Mod. Transm. 3, 10–18 (2015)

    Google Scholar 

  18. cableabc.com, 0.1419 dB/km: Sumitomo electric works to refresh the lowest fiber loss record. http://t.cn/RQCZMqE, March 2017

  19. I.P. Kaminow, T.L. Koch, Optical Fiber Telecommunications, 4th edn. (Academic Press, Salt Lake, 2002)

    Google Scholar 

  20. I.P. Kaminow, Optical Fiber Telecommunications, 5th edn. (Academic Press, Salt Lake, 2007)

    Google Scholar 

  21. I.P. Kaminow, Optical Fiber Telecommunications, 6th edn. (Academic Press, Salt Lake, 2013)

    Google Scholar 

  22. G. Wellbrock, T. Wang, O. Ishida, New paradigms in optical communications and networks. IEEE Commun. Mag. 51(3), 22–23 (2013)

    Article  Google Scholar 

  23. I. Tomkos, B. Mukherjee, S.K. Korotky et al., The evolution of optical networking. Proc. IEEE 100(5), 1017–1022 (2012)

    Article  Google Scholar 

  24. C. Xu, X. Liu, X. Wei, Differential phase-shift keying for high spectral efficiency optical transmissions. IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004)

    Article  Google Scholar 

  25. S.L. Jansen, D.V.D. Borne, B. Spinnler et al., Optical phase conjugation for ultra long-haul phase-shift-keyed transmission. J. Lightwave Technol. 24(1), 54–64 (2006)

    Article  Google Scholar 

  26. K.P. Ho, Phase-Modulated Optical Communication Systems (Springer, New York, 2005)

    Google Scholar 

  27. A.J. Lowery, D. Liang, J. Armstrong, Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems, in 2006 National Fiber Optic Engineers Conference and the National Fiber Optic Engineers Conference, 5–10 Mar 2006, Anaheim, California (IEEE Press, New Jersey, 2006), pp. 1–3

    Google Scholar 

  28. W. Shieh, C. Athaudage, Coherent optical orthogonal frequency division multiplexing. Electron. Lett. 42(10), 587–589 (2006)

    Article  Google Scholar 

  29. S.J. Savory, Digital filters for coherent optical receivers. Opt. Express 16(2), 804–817 (2008)

    Article  Google Scholar 

  30. W. Shieh, I. Diorjevic, Orthogonal Frequency Division Multiplexing for Optical Communications (Academic Press, Salt Lake, 2010)

    Google Scholar 

  31. T. Wang, G. Wellbrock, O. Ishida, Next generation optical transport beyond 100G. IEEE Commun. Mag. 50(2), s10–s11 (2012)

    Article  Google Scholar 

  32. E.S. Boyden, Z. Feng, B. Ernst, Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9), 1263–1268 (2005)

    Article  Google Scholar 

  33. S. Chandrasekhar, X. Liu, B. Zhu, et al., Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber, in 35th European Conference on Optical Communication, 20–24 Sept 2009, Vienna, Austria (IEEE Press, New Jersey, 2009), pp. 1–2

    Google Scholar 

  34. X. Liu, S. Chandrasekhar, P.J. Winzer, Digital signal processing techniques enabling multi-Tb/s super channel transmission. IEEE Signal Process. Mag. 31(2), 16–24 (2014)

    Article  Google Scholar 

  35. X. Liu, S. Chandrasekhar, Super channel for next-generation optical networks, in Optical Fiber Communications Conference and Exhibition, 9–13 Mar 2014, San Francisco, CA, USA (IEEE Press, New Jersey, 2014), pp. 1–33

    Google Scholar 

  36. Y.R. Zhou, K. Smith, S. West et al., Field trial demonstration of real-time optical superchannel transport up to 5.6 Tb/s over 359 km and 2 Tb/s over a live 727 km flexible grid link using 64G. J. Lightwave Technol. 34(2), 805–811 (2015)

    Article  Google Scholar 

  37. M. Jinno, H. Takara, B. Kozicki et al., Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)

    Article  Google Scholar 

  38. X.G. Cui, X. Liu, S.Y. Cao et al., Development, challenge and opportunity of optical fiber communication system technologies. Telecommun. Sci. 5, 1–10 (2016)

    Google Scholar 

  39. Y.L. Tan, Optical Fiber Communication System (Hunan University Press, 2000)

    Google Scholar 

  40. G.P. Agrawal, Fiber-optic communication systems. Nasa Sti/Recon Tech. Rep. A 93(2), 12–20 (1997)

    Google Scholar 

  41. I. Shake, H. Takara, K. Mori et al., Influence of inter-bit four-wave mixing in optical TDM transmission. Electron. Lett. 34(16), 1600–1601 (1998)

    Article  Google Scholar 

  42. R.J. Essiambre, B. Mikkelsen, G. Raybon, Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems. Electron. Lett. 35(18), 1576–1577 (1999)

    Article  Google Scholar 

  43. A. Mecozzi, C.B. Clausen, M. Shtaif, Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photonics Technol. Lett. 12(4), 392–394 (2000)

    Article  Google Scholar 

  44. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn (Academic Press, 2010)

    Google Scholar 

  45. M. Bertolini, N. Rossi, P. Serena et al., Do’s and don’ts for a correct nonlinear PMD emulation in 100 Gb/s PDM-QPSK systems. Opt. Fiber Technol. 16, 274–278 (2010)

    Article  Google Scholar 

  46. M. Li, F. Zhang, Z. Chen et al., Chromatic dispersion compensation and fiber nonlinearity mitigation of OOK signals with diverse-VSB-filtering FFE and DFE. Opt. Express 16(26), 21991–21996 (2008)

    Article  Google Scholar 

  47. H.S. Carrer, D.E. Crivelli, M.R. Hueda, Maximum likelihood sequence estimation receivers for DWDM lightwave systems, in 2004 Global Telecommunications Conference, 29 Nov.–3 Dec. 2004, Dallas, TX, USA, vol. 2, pp. 1005–1010 (2005)

    Google Scholar 

  48. I.B. Djordjevic, L.L. Minkov, L. Xu et al., Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using Turbo equalization. J. Opt. Commun. Networking 1(6), 555–564 (2009)

    Article  Google Scholar 

  49. E. Ip, J.M. Kahn, Compensation of dispersion and nonlinear impairments using digital back propagation. J. Lightwave Technol. 26(20), 3416–3425 (2008)

    Article  Google Scholar 

  50. L.B. Du, A.J. Lowery, Improved single channel back propagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems. Opt. Express 18(16), 17075–17088 (2010)

    Article  Google Scholar 

  51. X.H. Zhao, B.J. Yang, Limitation of stimulated Raman scattering on the power of wavelength division multiplexed transmission system. J. Beijing Univ. Posts Telecommun. 26(z1), 13–16 (2003)

    Google Scholar 

  52. H.X. Bian, S.H. Hou, Theroy of stimulated Raman crosstall cancellation in WDM systems via wavelength conversion technology. Commun. Technol. 40(12), 46–47 (2007)

    Google Scholar 

  53. X.A. Mei, J.Y. Tao, S. Yuan et al., A comprehensive study of SRS optical power equalization. J. Changsha Univ. 21(2), 10–12 (2007)

    Google Scholar 

  54. R.I. Killey, P.M. Watts, M. Glick et al., Electronic dispersion compensation by signal predistortion, in 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, 5–10 Mar 2006, Anaheim, CA, USA, vol. 25, No. 6, p. 3 (2006)

    Google Scholar 

  55. G. Goeger, Modulation format with enhanced SPM-robustness for electronically pre-distorted transmission, in 2006 European Conference on Optical Communications, 24–28 Sept 2006, Cannes, France, pp. 1–2 (2006)

    Google Scholar 

  56. C. Xu, X. Liu, Post nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission. Opt. Lett. 17(18), 1619–1621 (2002)

    Article  Google Scholar 

  57. G. Charlet, QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation, Leos Summer Topical Meeting, 23–25 July 2007, Portland, OR, USA, pp. 43–44 (2007)

    Google Scholar 

  58. K.P. Ho, Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise. IEEE J. Sel. Top. Quantum Electron. 10(2), 421–427 (2004)

    Article  Google Scholar 

  59. G. Charlet, H. Mardoyan, P. Tran, et al., Nonlinear interactions between 10 Gb/s NRZ channels and 40 Gb/s channels with RZ-DQPSK or PSBT format over low-dispersion fiber, in 2006 European Conference on Optical Communications, 24–28 Sept 2006, Cannes, France, pp. 1–2 (2006)

    Google Scholar 

  60. X. Liu, S. Chandrasekhar, Suppression of XPM penalty on 40-Gb/s DQPSK resulting from 10-Gb/s OOK channels by dispersion management, in 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, 24–28 Feb 2008, San Diego, CA, USA, pp. 1–3 (2008)

    Google Scholar 

  61. F. Inuzuka, E. Yamazaki, K. Yonenaga, et al., Nonlinear inter-channel crosstalk compensation using electronic pre-distortion in carrier phase locked WDM, in 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, 24–28 Feb 2008, San Diego, CA, USA, pp. 1–3 (2008)

    Google Scholar 

  62. X. Li, X. Chen, G. Goldfarb et al., Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Opt. Express 16(2), 880–888 (2008)

    Article  Google Scholar 

  63. T. Hirooka, M.J. Ablowitz, Intrachannel pulse interactions in dispersion-managed transmission systems: energy transfer. IEEE Photonics Technol. Lett. 14(3), 316–318 (2002)

    Article  Google Scholar 

  64. R.I. Killey, H.J. Thiele, V. Mikhailov et al., Reduction of intrachannel nonlinear distortion in 40-Gb/s-based WDM transmission over standard fiber. IEEE Photonics Technol. Lett. 12(12), 1624–1626 (2000)

    Article  Google Scholar 

  65. J. Martensson, M. Westlund, A. Bernston, Intra-channel pulse interactions in 40Gbit/s dispersion-managed RZ transmission. Electron. Lett. 36(2), 244–246 (2000)

    Article  Google Scholar 

  66. A. Mecozzi, C.B. Clausen, M. Shtaif et al., Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photonics Technol. Lett. 13(5), 445–447 (2001)

    Article  Google Scholar 

  67. X. Wei, A.H. Gnauck, X. Liu et al., Nonlinearity tolerance of RZ-AMI format in 42.7 Gbit/s long-haul transmission over standard SMF spans. Electron. Lett. 39(20), 1459–1461 (2003)

    Article  Google Scholar 

  68. J. Martensson, A. Berntson, A. Djupsjobacka et al., Phase modulation schemes for improving intrachannel nonlinear tolerance in 40 Gbit/s transmission, in 2003 Optical Fiber Communication, 28–28 Mar 2003, Atlanta, GA, USA, vol. 2, pp. 662–663 (2003)

    Google Scholar 

  69. V. Mikhailov, C.R. Doerr, L. L. Buhl, et al., Mitigation of intra-channel nonlinear distortion in 42.7 Gb/s RZ transmission using a single chip optical equalizer, in 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, 5–10 Mar 2006, Anaheim, CA, USA, p. 3 (2006)

    Google Scholar 

  70. J. Li, F. Zhang, Z. Chen, Electronic equalization of intrachannel nonlinearities, in 2007 International Nano-Optoelectronics Workshop, July 29–August 11, 2007, Beijing, China, pp. 108–109 (2007)

    Google Scholar 

  71. A.H. Gnauck, P.J. Winzer, C.R. Doerr, et al. 10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency, in 2009 Optical Fiber Communication—Incudes Post Deadline Papers, 22–26 Mar 2009, San Diego, CA, USA, pp. 1–3 (2009)

    Google Scholar 

  72. T. Omiya, M. Yoshida, M. Nakazawa et al., 400 Gbit/s 256 QAM-OFDM Transmission over 720 km with a 14 bit/s/Hz spectral efficiency using an improved FDE technique. Opt. Express 21(3), 2632–2641 (2013)

    Article  Google Scholar 

  73. R. Yuan, Overview of OFDM for optical communication systems. Opt. Commun. Technol. 8, 29–33 (2011)

    Google Scholar 

  74. A. Sano, H. Masuda, T. Kobayashi, et al., 69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation and Digital Coherent Detection, in 2010 Optical Fiber Communication, 21–25 Mar 2010, San Diego, CA, USA, pp. 1–3 (2010)

    Google Scholar 

  75. X.S. Yao, L.S. Yan, B. Zhang et al., All-optic scheme for automatic polarization division demultiplexing. Opt. Express 15(12), 7407–7414 (2007)

    Article  Google Scholar 

  76. J.S. Lai, R. Tang, B.B. Wu et al., Analysis on the research progress of space division multiplexing in optical fiber communication. Telecommun. Sci. 9, 118–135 (2017)

    Google Scholar 

  77. K. Igarashi, D. Soma, Y. Wakayama et al., Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers. Opt. Express 24(10), 10213 (2016)

    Article  Google Scholar 

  78. A. Sano, T. Kobayashi, S. Yamanaka, et al., 102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone, in Optical Fiber Communication Conference and Exposition, 4–8 Mar 2012, Los Angeles, CA, USA, pp. 1–3 (2012)

    Google Scholar 

  79. R. Ryf, N.K. Fontaine, H. Chen et al., Mode-multiplexed transmission over conventional graded-index multimode fibers. Opt. Express 23(1), 235–246 (2015)

    Article  Google Scholar 

  80. ETSI, Digital Video Broadcasting (DVB); User guidelines for the second generation system for broadcasting, interactive services, new gathering and other broad-band satellite applications (DVB-S2), TR 102 376

    Google Scholar 

  81. L.H. Guo, L. Zhang, Z.W. Du et al., A survey of lunar laser communications demonstration of NASA. J. Spacecraft TT&C Technol. 34(1), 87–94 (2015)

    Google Scholar 

  82. Z. Zeng, X. Liu, H. Sun et al., Latest developments of space laser communications and some development suggestions. Opt. Commun. Technol. 6, 1–5 (2017)

    Google Scholar 

  83. OFS, Fiber optic cables. http://t.cn/RQl3nFa, June 2017

  84. M.J. Li, H. Chen, Novel optical fibers for high-capacity trans-mission system. Telecommun. Sci. 30(6), 1–15 (2014)

    Google Scholar 

  85. K. Saitoh, S. Matsuo, Multicore fiber technology. J. Lightwave Technol. 34(1), 55–66 (2016)

    Article  Google Scholar 

  86. A. Turukhin, O.V. Sinkin, H.G. Batshon, et al., 105.1 Tb/s power-efficient transmission over 14,350 km using a 12-core fiber, in Optical Fiber Communication Conference 2006, 20–24 March 2016, Anaheim, CA, USA, pp. 1–3 (2006)

    Google Scholar 

  87. N.K. Fontaine, R. Ryf, H. Chen, et al., 30 × 30 MIMO transmission over 15 spatial modes, in 2015 Optical Fiber Communications Conference and Exhibition, 22–26 March 2015, Los Angeles, CA, USA, pp. 1–3 (2015)

    Google Scholar 

  88. A.E. Willner, A.F. Molisch, C. Bao et al., Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 7(1), 66–106 (2015)

    Article  Google Scholar 

  89. J.S. Lai, B.B. Wu, W.Y. Zhao et al., Orbital angular momentum technology in optical communication and its application analysis. Telecommun. Sci. 30(5), 46–50 (2014)

    Google Scholar 

  90. L.P. Xu, Optical communication industry: opportunities and challenges coexist. Shanghai Informatization 5, 53–56 (2017)

    Google Scholar 

  91. H.F. Jiang, All-wave fiber and its characteristics. Opt. Fiber Electric Cable Their Appl. 3, 9–11 (2001)

    Google Scholar 

  92. K.W.A. Chee, Z. Tang, H. Lü, F. Huang, Anti-reflective structures for photovoltaics: numerical and experimental design. Energy Rep. 4, 266–273 (2018)

    Google Scholar 

  93. L. Guo, D.F. Tang, Optical soliton communication technology and its prospects. Electron Technol. 30(8), 97–99 (2013)

    Google Scholar 

  94. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th Annual Symposium on Foundations of Computer Science, 20–22 Nov 1994, Santa Fe, NM, USA, pp. 124–134 (1994)

    Google Scholar 

  95. M.A. Nielsen, I. Chuang, Quantum Computing and Quantum Information (Cambridge Press, 2000)

    Google Scholar 

  96. N. Gisin, G. Ribordy, W. Tittel, et al., Quantum cryptography. Rev. Modern Phys. 74, 145–195 (2002)

    Google Scholar 

  97. X. Zhang, D. Huang, J. Sun et al., A novel scheme for XGM wavelength conversion based on single-port-coupled SOA. Chin. Phys. 10(2), 124–127 (2001)

    Article  Google Scholar 

  98. A.M. Clarke, G. Girault, P. Anandarajah, et al., FROG characterisation of SOA-based wavelength conversion using XPM in conjunction with shifted filtering up to line rates of 80 GHz, in LEOS 2006—19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, October 29–November 2, 2006, Montreal, Que., Canada, pp. 152–153 (2006)

    Google Scholar 

  99. G. Contestabile, M. Presi, E. Ciaramella et al., Multiple wavelength conversion for WDM multicasting by FWM in an SOA. IEEE Photonics Technol. Lett. 16(7), 1775–1777 (2004)

    Article  Google Scholar 

  100. N.E. Dahdah, R. Coquille, B. Charbonnier et al., All-optical wavelength conversion by EAM with shifted bandpass filter for high bit-rate networks. IEEE Photonics Technol. Lett. 18(1), 61–63 (2005)

    Article  Google Scholar 

  101. Y. Wang, C.Q. Xu, Picosecond-pulse wavelength conversion based on cascaded SFG/DFG in a PPLN waveguide. Appl. Opt. 45(21), 5391–5403 (2006)

    Article  Google Scholar 

  102. J. Fonseca-Campos, Y. Wang, B. Chen, 40-GHz picosecond-pulse second-harmonic generation in a MgO-doped PPLN waveguide. IEEE J. Lightwave Technol. 24(10), 3698–3708 (2006)

    Article  Google Scholar 

  103. Y. Wang, C.Q. Xu, Analysis of ultrafast all-optical OTDM demultiplexing based on cascaded wavelength conversion in PPLN waveguides. IEEE Photonics Technol. Lett. 19(7), 495–497 (2007)

    Article  Google Scholar 

  104. M. Takahashi, S. Takasaka, R. Sugizaki, et al., Arbitrary wavelength conversion in entire CL-band based on pump-wavelength-tunable FWM in a HNLF, in 2010 Conference on Optical Fiber Communication, 21–25 Mar 2010, San Diego, CA, USA, pp. 1–3 (2010)

    Google Scholar 

  105. S. Suda, J. Kurumida, K. Tanizawa, et al., Pattern-effect-free wavelength conversion based on FWM in hydrogenated amorphous silicon waveguide, in 2011 Optical Fiber Communication Conference and Exposition, and the National Fiber Optic Engineers Conference, 6–10 Mar 2011, Los Angeles, CA, USA, pp. 1–3 (2011)

    Google Scholar 

  106. J. Horer, E. Patzak, Large-signal analysis of all-optical wavelength conversion using two-mode injection-locking in semiconductor lasers. IEEE J. Quantum Electron. 33(4), 596–608 (1997)

    Article  Google Scholar 

  107. C.J. Wu, C.X. Yan, Z.L. Gao, Overview of space laser communications. Chin. Opt. 06(05), 670–680 (2013)

    Google Scholar 

  108. J. Rong, Y. Hu, The application of optical power amplified technology in intersatellites optical communications. Laser J. 23(5), 7–9 (2003)

    Google Scholar 

  109. C.Z. Wu, Application of FSO system in next generation mobile bearer network. Modern Transm. 02, 56–66 (2012)

    Google Scholar 

  110. Z. Lu, Z. Wu, Closed-form suboptimal maximum likelihood sequence detection for free space optical communications. Appl. Opt. 51(27), 6441–6447 (2012)

    Article  Google Scholar 

  111. K.M. Arun, C.R. Jennifer, Free-Space Laser Communications Principles and Advances (Springer Press, New York, 2008)

    Google Scholar 

  112. F. Li, Z. Hou, Y. Wu, Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere. Opt. Laser Technol. 45, 104–109 (2013)

    Article  Google Scholar 

  113. X. Li, S.Y. Yu, J. Ma et al., Analytical expression and optimization of spatial acquisition for intersatellite optical communications. Opt. Express 19(3), 2381–2390 (2011)

    Article  Google Scholar 

  114. X. Zhang, Y. Cao, X.F. Peng et al., Research on coding technology of LT code in free space optical communication. Semicond. Optoelectron. 38(2), 242–245 (2017)

    Google Scholar 

  115. Y. Tanaka, S. Haruyama, M. Nakagawa, Wireless optical transmissions with white colored LED for wireless home links, in 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications, 18–21 Sept 2000, London, UK, pp. 1325–1329 (2000)

    Google Scholar 

  116. Y. Tanaka, T. Komine, S. Haruyama, et al., Indoor visible communication utilizating plural white LEDs as lighting, in The 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 3 October–30 September 2001, San Diego, CA, USA, pp. F81–F85 (2001)

    Google Scholar 

  117. K. Fan, T. Komine, Y. Tanaka, et al., The effect of reflection on indoor visible light communication system utilizing white LEDs, in The 5th International Symposium on Wireless Personal Multimedia Communications, 27–30 Oct 2002, Honolulu, HI, USA, pp. 611–615 (2002)

    Google Scholar 

  118. H. Haas, High-speed Wireless Networking Using Visible Light (Spienewsroom, 2013)

    Google Scholar 

  119. Y. Wang, R. Li, Y. Wang, et al., 3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED, in 2014 Optical Fiber Communications Conference and Exhibition, 9–13 Mar 2014, San Francisco, CA, USA, pp. 1–3 (2014)

    Google Scholar 

  120. R.A. Griffin, R.I. Johnstone, R.G. Walker, et al., 10 Gb/s Optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration, in 2002 Optical Fiber Communication Conference and Exhibit, 17–22 Mar 2002, Anaheim, CA, USA, pp. FD6-1–FD6-3 (2002)

    Google Scholar 

  121. A.H. Gnauck, P.J. Winzer, C.R. Doerr, et al., 10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency, in 2009 Optical Fiber Communication—incudes post deadline papers, 22–26 Mar 2009, San Diego, CA, USA, pp. 1–3 (2009)

    Google Scholar 

  122. M. Salsi, H. Mardoyan, P. Tran, et al., 155 × 100 Gbit/s coherent PDM-QPSK transmission over 7,200 km, in 2009 European Conference on Optical Communications, 20–24 Sept 2009, Vienna, Austria, pp. 1–2 (2009)

    Google Scholar 

  123. A.H. Gnauck, P.J. Winzer, S. Chandrasekhar, et al., 10 × 224-Gb/s WDM Transmission of 28-Gbaud PDM 16-QAM On A 50-GHz Grid Over 1,200 Km of Fiber, in 2010 Optical Fiber Communication, 21–25 Mar 2010, San Diego, CA, USA, pp. 1–3 (2010)

    Google Scholar 

  124. T. Richter, E. Palushani, C. Schmidtlanghorst, et al., Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection, in 2011 Optical Fiber Communication Conference and Exposition, 6–10 Mar 2011, Los Angeles, CA, USA, pp. 1–3 (2011)

    Google Scholar 

  125. C.Q. Zhang, Analysis of LTE-A high baseband modulation technology 256QAM. Telecommun. Netw. Technol. 11, 57–61 (2015)

    Google Scholar 

  126. C.Q. Zhang, Study on high speed baseband digital modulation techniques for 5G. Designing Tech. Posts Telecommun. 7(11), 33–38 (2017)

    Google Scholar 

  127. X. Li, Research on the application of FQAM modulation technology oriented to 5G. Sci. Technol. Vis. 10, 53–54 (2017)

    Google Scholar 

  128. Q. Jin, Y. Hu, Analysis of 100/400 Gbits/s PAM4 optical transceiver module technology. Study Opt. Commun. 194, 33–36 (2016)

    Google Scholar 

  129. C.H. Yeh, C.W. Chow, C.H. Wang, et al., Using OOK modulation for symmetric 40-Gb/s long-reach time-sharing passive optical networks. IEEE Photonics Technol. Lett. 22(9), 619–621 (2010)

    Google Scholar 

  130. G.W. Lu, T. Miyazaki, Optical phase add-drop for format conversion between DQPSK and DPSK and its application in optical label switching systems. IEEE Photonics Technol. Lett. (2009)

    Google Scholar 

  131. T. Dohong, “Differential phase shift keying,” Network Dictionary, 2007

    Google Scholar 

  132. W.Y. Gu, Ultra Long Haul Optical Transmission Technology (Beijing University of Posts and Telecommunications Press, 2006)

    Google Scholar 

  133. J. Wang, J.M. Kahn, Conventional DPSK versus symmetrical DPSK: comparison of dispersion tolerances. Photonics Technol. Lett. 16(6), 1585–1587 (2004)

    Article  Google Scholar 

  134. A. Castanon, A. Gerardo, I.A. Aldaya Garde. Optical signal phase regenerator for formats of differential modulation with phase changes. US, US 8280261 B2 (2012)

    Google Scholar 

  135. G. Khanna, T. Rahman, E. Man, et al., Single-carrier 400G 64QAM and 128QAM DWDM field trial transmission over metro legacy links. IEEE Photonics Technol. Lett. 29, 189–192 (2017)

    Google Scholar 

  136. H.C. Chien, J. Zhang, J. Yu, et al., Single-carrier 400G PM-256QAM generation at 34 GBaud trading off bandwidth constraints and coding overheads, in 2017 Optical Fiber Communications Conference and Exhibition, 19–23 Mar 2017, Los Angeles, CA, USA, pp. 1–3 (2017)

    Google Scholar 

  137. T.J. Richardson, A. Shokrollahi, R. Urbanke et al., Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory 47(2), 619–637 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  138. W. Niblack, E. Wolf, Polarization modulation and demodulation of light. Appl. Opt. 3(2), 277–279 (1964)

    Article  Google Scholar 

  139. S. Benedetto, P. Poggiolini, Theory of polarization shift keying modulation. IEEE Trans. Commun. 40, 708–721 (1992)

    Article  MATH  Google Scholar 

  140. C. Berrou, A. Glavieux, Near optimum error correcting coding and decoding: turbo-codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  141. Y.Y. Pan, B. Bai, A.P. Huang et al., Pulse-position-width modulation scheme in wireless optical communication system. Chin. J. Lasers 12(35), 1883–1887 (2008)

    Google Scholar 

  142. Y. Liu, G.A. Zhang, Study on modulation scheme of visible light communications and its performance. Laser Optoelectron. Prog. 9, 65–71 (2014)

    Google Scholar 

  143. D.E. Muller, Application of boolean algebra to switching circuit design and to error detection. Trans. IRE Prof. Group Electron. Comput. EC 3(3), 6–12 (1954)

    Google Scholar 

  144. I. Reed, A class of multiple-error-correcting codes and the decoding scheme. Inf. Theory Trans. IRE Prof. Group 4(4), 38–49 (1954)

    Article  MathSciNet  Google Scholar 

  145. R.G. Gallager, Low-density parity-check codes. IEEE Press 8(1), 3–26 (2011)

    MathSciNet  Google Scholar 

  146. L. Lopacinski, J. Nolte, S. Buechner, et al., Improved turbo product coding dedicated for 100 Gbps wireless terahertz communication, in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, 4–8 Sept 2016, Valencia, Spain, pp. 1–6 (2016)

    Google Scholar 

  147. D.J.C. Mackay, R.M. Neal, Near Shannon limit performance of low-density parity-check codes. IEEE Lett. 32(18), 1645–1646 (1996)

    Article  Google Scholar 

  148. D.J.C. Mackay, Good error correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45(2), 399–431 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  149. M.C. Davey, D.J.C. Mackay, Low density parity check codes over GF(q). IEEE Inf. Theory Workshop 2(6), 70–71 (2002)

    Google Scholar 

  150. M. Luby, Efficient erasure correcting codes. IEEE Trans. Inf. Theory 47(2), 569–584 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  151. A. Chakrabarti et al., Low density parity check codes for the relay channel. IEEE Sel. Areas Commun. 25(2), 280–291 (2007)

    Article  Google Scholar 

  152. A. Baynast, A. Sabharwal, B. Azhang, et al., LDPC code design for OFDM channel: graph connectivity and information bits positioning, in IEEE International Symposium on Signals, Circuits and Systems, vol. 2, pp. 649–652 (2005)

    Google Scholar 

  153. M. Ardakani, F.R. Kschischang, A more accurate one-dimensional analysis and design of irregular LDPC codes. IEEE Trans. Commun. 52(12), 2106–2114 (2004)

    Article  Google Scholar 

  154. K. Fu, A. Anstasopoulos, Analysis and design of LDPC codes for time selective complex-fading channels. IEEE Trans. Wireless Commun. 4(3), 1175–1185 (2005)

    Article  Google Scholar 

  155. N. Wen, J.W. Lu, X. Liu et al., Optimized irregular LDPC codes design for OFDM system. J. Beijing Univ. Posts Telecommun. 29(4), 107–110 (2006)

    Google Scholar 

  156. H. Tang, J. Xu, S. Lin, Codes on finite geometries. IEEE Trans. Inf. Theory 51(2), 572–596 (2005)

    Google Scholar 

  157. X.Y. Hu, E. Eleftheriou, D. M. Arnold, Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory 51(1) (2005)

    Google Scholar 

  158. M.P.C. Fossorier, M. Mihaljevic, H. Imai, Reduced complexity iterative decoding of low density parity check codes based on belief propagation. IEEE Trans. Commun. 47, 673–680 (1999)

    Article  Google Scholar 

  159. J. Chen, M.P.C. Fossorier, Near optimum universal belief propagation based decoding of LDPC codes. IEEE Trans. Commun. 50, 406–414 (2002)

    Article  Google Scholar 

  160. E. Arikan, A performance comparison of polar codes and Reed-Muller codes. IEEE Commun. Lett. 12(6), 447–449 (2008)

    Article  Google Scholar 

  161. E. Arikan, E. Telatar, On the rate of channel polarization, in 2009 IEEE International Symposium on Information Theory, June 28–July 3, 2009, Seoul, Korea, pp. 1493–1495 (2009)

    Google Scholar 

  162. E. Arikan, Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  163. N. Hussami, S.B. Korada, R. Urbanke, Performance of polar codes for channel and source coding, in IEEE International Symposium on Information Theory, pp. 1488–1492 (2009)

    Google Scholar 

  164. K. Chen, K. Niu, J. Lin, Improved successive cancellation decoding of polar codes. IEEE Trans. Commun. 61(8), 3100–3107 (2013)

    Article  Google Scholar 

  165. Q. Zhang, A. Liu, X. Pan et al., CRC code design for list decoding of polar codes. IEEE Commun. Lett. 21(6), 1229–1232 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan W. A. Chee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Y., Wang, Y., Chee, K.W.A. (2019). Optical Communications and Modulation Techniques in 5G. In: Kabalci, E., Kabalci, Y. (eds) Smart Grids and Their Communication Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-1768-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1768-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1767-5

  • Online ISBN: 978-981-13-1768-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics