Skip to main content

Spatio-temporal Characterization of Axoplasmic Fluid Pressure with Respect to Ionic Diffusivities

  • Conference paper
  • First Online:
Engineering Vibration, Communication and Information Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 478))

  • 1043 Accesses

Abstract

In this paper, spatio-temporal characterization of axoplasmic fluid pressure has been performed with respect to ionic diffusivities. It has been observed that the propagation speed of axoplasmic fluid pressure is 19.5 m/s when longitudinal ionic diffusivities are considered along with ionic conductances at a temperature of \(18.5\,^\circ \text {C}\). However, this propagation speed of axoplasmic fluid pressure increases to 19.7 m/s when longitudinal ionic diffusivities are considered along with temperature-dependent diffusivities across the membrane at the same temperature of \(18.5\,^\circ \text {C}\). This is an important result where it has been possible to obtain axoplasmic pressure propagation velocities with respect to temperature-dependent ionic diffusivities. Also, based on the fact that increased intracellular pressure may lead to a number of neuronal disorders, temperature-dependent ionic diffusivities can be further fine-tuned to reduce the intracellular pressure and hence avoiding neuronal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, S.S.L., Jackson, A.D., Heimburg, T.: Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. 88(2), 104–113 (2009). https://doi.org/10.1016/j.pneurobio.2009.03.002

    Article  Google Scholar 

  2. Arhem, P.: Diffusion of sodium in axoplasm of myelinated nerve fibre. Potential clamp analysis. Acta Physiol. Scand. 97(4), 415–425 (1976). https://doi.org/10.1111/j.1748-1716.1976.tb10282.x

    Article  Google Scholar 

  3. Barz, H., Barz, U.: Pressure waves in neurons and their relationship to tangled neurons and plaques. Med. Hypotheses 82(5), 563–566 (2014). https://doi.org/10.1016/j.mehy.2014.02.012

    Article  Google Scholar 

  4. Barz, H., Barz, U., Schreiber, A.: Neuronal Impulse Theory and Alzheimer’s Disease. J. Alzheimers Dis. Park. 4(1), 1–3 (2014). https://doi.org/10.4172/2161-0460.1000134

  5. Barz, H., Schreiber, A., Barz, U.: Impulses and pressure waves cause excitement and conduction in the nervous system. Med. Hypotheses 81(5), 768–772 (2013). https://doi.org/10.1016/j.mehy.2013.07.049

    Article  Google Scholar 

  6. Bhatia, S., Singh, P., Sharma, P.: HodgkinHuxley model based on ionic transport in axoplasmic fluid. J. Integr. Neurosci. 16(4), 401–417 (2017). https://doi.org/10.3233/JIN-170029

    Article  Google Scholar 

  7. Causey, G.: The effect of pressure on nerve fibres. J. Anat. 82(4), 262–270-1 (1948)

    Google Scholar 

  8. El Hady, A., Machta, B.B.: Mechanical surface waves accompany action potential propagation. Nat. Commun. 6, 6697 (2015). https://doi.org/10.1038/ncomms7697

    Article  Google Scholar 

  9. Graesboll, K., Sasse-Middelhoff, H., Heimburg, T.: The Thermodynamics of General and Local Anesthesia. Biophys. J. 106(10), 2143–2156 (2014). https://doi.org/10.1016/j.bpj.2014.04.014

    Article  Google Scholar 

  10. Heimburg, T., Jackson, A.D.: The thermodynamics of general Anesthesia. Biophys. J. 92(9), 3159–3165 (2007). https://doi.org/10.1529/biophysj.106.099754

    Article  Google Scholar 

  11. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  12. Hodgkin, A.L., Keynes, R.D.: The mobility and diffusion coefficient of potassium in giant axons from Sepia. J. Physiol. 119(4), 513–528 (1953). https://doi.org/10.1113/jphysiol.1953.sp004863

    Article  Google Scholar 

  13. Liu, Y., Zhu, F.: Collective diffusion model for ion conduction through microscopic channels. Biophys. J. 104(2), 368–376 (2013). https://doi.org/10.1016/j.bpj.2012.11.3826

    Article  Google Scholar 

  14. Qian, N., Sejnowski, T.J.: Electro diffusion model of electrical conduction in neuronal processes. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds.) Cellular Mechanisms of Conditioning and Behavioral Plasticity, pp. 237–244. Springer, US (1988). https://doi.org/10.1007/978-1-4757-9610-0_23

    Chapter  Google Scholar 

  15. Rvachev, M.M.: On axoplasmic pressure waves and their possible role in nerve impulse propagation. Biophys. Rev. Lett. 05(02), 73–88 (2010). https://doi.org/10.1142/S1793048010001147

    Article  Google Scholar 

  16. Tasaki, I., Singer, I., Watanabe, A.: Cation interdiffusion in squid giant axons. J. Gener. Physiol. 50(4), 989–1007 (1967)

    Article  Google Scholar 

  17. Xiang, Z.X., Liu, G.Z., Tang, C.X., Yan, L.X.: A model of ion transport processes along and across the neuronal membrane. J. Integr. Neurosci. 16(1), 33–55 (2017). https://doi.org/10.3233/JIN-160002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhatia, S., Singh, P., Sharma, P. (2019). Spatio-temporal Characterization of Axoplasmic Fluid Pressure with Respect to Ionic Diffusivities. In: Ray, K., Sharan, S., Rawat, S., Jain, S., Srivastava, S., Bandyopadhyay, A. (eds) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-13-1642-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1642-5_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1641-8

  • Online ISBN: 978-981-13-1642-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics