Skip to main content

Insecticide Toxicity on Indigenous Cyanobacteria from Alluvial Rice Fields

  • Chapter
  • First Online:

Abstract

Pesticides are used for agricultural practices affect the soil’s natural beneficial microorganisms like cyanobacteria. Effects of commonly used organochlorine and organophosphate insecticide were studied for growth and remediation potential of rice field indigenous cyanobacterial community under enrichment culture. Inhibition of species richness was noted under insecticide treatment within enriched cyanobacterial community. One unicellular strain of Aphanothece sp. and one heterocystous strain of Nostoc sp. were subjected to in vitro experiment. Effective concentration 50 (EC 50) of each insecticide was calculated for each strain. When both the strains were studied individually, they showed potentiality to minimize the insecticide concentration in insecticide-spiked growth medium. Organochlorine was found to be the most toxic. To mitigate insecticide pollution, indigenous cyanobacterial population could be used as filter for contaminated agricultural runoff.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumarasamy P, Govindaraj S, Vignesh S, Rajendran RB, James RA (2012) Anthropogenic nexus on organochlorine pesticide pollution: a case study with Tamiraparani river basin, South India. Environ Monit Assess 184(6):3861–3873 2011 July 29

    Article  CAS  Google Scholar 

  2. Chauhan RS, Singhal L (2006) Harmful effects of pesticides and their control through cowpathy. Int J Cow Sci 2:61–70

    Google Scholar 

  3. Bereswill R, Streloke M, Schulz R (2013) Current use pesticides in stream water and suspended particles following runoff: exposure, effects, and mitigation requirements. Environ Toxicol Chem 32:1254–1263

    Article  CAS  Google Scholar 

  4. Carvalho FP, Fowler SW, Villeneuve JP, Horvat M (1997) Pesticide residues in the marine environment and analytical quality assurance of the results. In: Proceedings of an international FAO/IAEA symposium on the environmental behaviour of crop protection chemicals. IAEA, Vienna, pp 35–57

    Google Scholar 

  5. Balakrishnan’G RM, Banerjee BD, Hussain QZ (1985) Effect of dietary protein, dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexanes (HCH) on hepatic microsomal enzyme activity in rats. Br J Nutr 54:563–566

    Article  Google Scholar 

  6. Wadhwani, Lall IJ (1972) Indian Council of Agricultural Research, New Delhi, pp 44–49

    Google Scholar 

  7. Saiyed HN, Bhatnagar VK, Kashyap R (1999) “Impact of pesticide use in India electronic journals: Asia pacific newsletter: 1999–2003. http://www.ttl.fi/Internet/English/Infotion/Electronic+journals/Asian-Pacific+News-let-ter/1999–03/05.htm

  8. Agrawal A, Pandey RS, Sharma B (2010) Water pollution with special reference to pesticide contamination in India. J Water Resour Protect 2:432–448

    Article  CAS  Google Scholar 

  9. Hill IR, Wright SJL (1978) Pesticide Microbiology. Academic Press, London, pp 7–10

    Google Scholar 

  10. Nayak DN, Rao RV (1982) Pesticides and nitrogen fixation in paddy soils. Soil Biol Biochem 14:207–210

    Article  CAS  Google Scholar 

  11. Anand N, Veerappan B (1980) Effect of pesticides and fungicides on blue green algae. Phykos 19:210–212

    Google Scholar 

  12. Kolte SO, Goyal SK (1990) Inhibition of growth and nitrogen fixation in Calothrix marchica by herbicide in vitro. In: Kaushik BD (ed) Proc national symposium on Cyanobacterial nitrogen fixation. Pub Associated Co., New Delhi, pp 507–510

    Google Scholar 

  13. Singh PK (1973) Effect of pesticides on blue green algae. Arch Mikrobiol 89:317–320

    Article  CAS  Google Scholar 

  14. Stratton GW (1987) The effects of pesticides and heavy metals on phototrophic micro-organisms. Rev Environ Toxicol 3:71–112

    Google Scholar 

  15. De PK (1939) The role of blue-green algae in nitrogen fixation in rice fields. Proc R Soc Lond B 127:121–139

    Article  CAS  Google Scholar 

  16. Mian MH, Stewart WDP (1985) Fate of nitrogen applied as Azolla and blue-green algae (cyanobacteria) in waterlogged rice soils. A 15N tracer study. Plant Soil 83:363–370

    Article  CAS  Google Scholar 

  17. Relwani LL (1963) Role of blue green algae on paddy field. Curr Sci 32:417–418

    Google Scholar 

  18. McCann AE, Cullimore DR (1979) Influence of pesticides on the soil algal flora. Residue Rev 72:1–31

    CAS  Google Scholar 

  19. Sokhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self-cleaning of the Gulf. Nature 359:109

    Article  Google Scholar 

  20. Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari VK (1994) Biodegradation of methylparathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  CAS  Google Scholar 

  21. Stainer RY, Kunisawa R, Mandel M, Cohin-Bazire G (1971) Purification and properties of unicellular blue green algae (order Chrococcales). Bacteriol Rev 35:171–205

    Google Scholar 

  22. Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  23. Hellebust JA, Craige JS (1978) Handbook of physiological and biochemical methods. Cambridge University Press, Cambridge, pp 64–70

    Google Scholar 

  24. Siegelman HW, Kygia JH (1978) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 73–79

    Google Scholar 

  25. Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8:3–26

    Article  CAS  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265

    CAS  Google Scholar 

  27. Lee SE, Kim JS, Kenedy IR, Park JW, Kwon GS, Koh SC et al (2003) Biotransformation of an Organochlorine Insecticide,Endosulfan, by Anabaena species. Agric Food Chem 51:1336–1340

    Article  CAS  Google Scholar 

  28. Lal S, Saxena DM (1980) Cytological and biochemical effects of pesticides on microorganisms. Residue Rev 73:49–86

    CAS  Google Scholar 

  29. Kumar S, Habib K, Fatma T (2008) Endosulfun induced biochemical changes in nitrogen-fixing cyanobacteria. Sci Total Environ (ELSEVIER) 403:130–138

    Article  CAS  Google Scholar 

  30. Ibrahim WM, Karam MA, Reda M (2014) Biodegradation and utilization of organophosphorus pesticide malathion by Cyanobacteria. Biomed Res Int 2014:1–6. https://doi.org/10.1155/2014/392682

    Article  CAS  Google Scholar 

  31. Ahmed MH, Venkataraman GS (1973) Tolerance of Aulosira fertilissima to pesticides. Curr Sci 1973:42–108

    Google Scholar 

  32. Wright SJL, Stantharpe AF, Downs JD (1977) Interaction of herbicide propanil and a metabolite, 3, 4-dichloromiline with blue green algae. Acta Pathol Acad Hung 12:51–57

    CAS  Google Scholar 

  33. Zarger MY, Dar GH (1990) Effect of benthiocarb and butachlor on growth and nitrogen fixation by cyanobacteria. Bull Environ Contam Toxicol 45:232–234

    Article  Google Scholar 

  34. Satish N, Tiwari GL (2000) Pesticide tolerance in Nostoc linckia in relation to the growth and nitrogen fixation. Proc Natl Acad Sci India 70:319–323

    Google Scholar 

  35. Padhy RN (1985) Cyanobacteria and pesticides. Res Rev:941–944

    Google Scholar 

  36. Kaushik BD, Venkataraman GS (1993) Response of cyanobacterial nitrogen fixation to insecticides. Curr Sci 52:321–323

    Google Scholar 

  37. Moreland DE (1980) Mechanism of action of herbicides. Annu Rev Plant Physiol 315:97–638

    Google Scholar 

  38. Chinnaswamy R, Patel RJ (1983) Effect of pesticide mixtures on the blue green alga Anabaena flos-aquae. Microb Lett 24:141–143

    CAS  Google Scholar 

  39. Rajendran UM, Elango K, Anand N (2007) Effects of a fungicide, an insecticide, and a biopesticdie on Tolypothrix scytonemoides. Pestic Biochem Physiol 87:164–171

    Article  CAS  Google Scholar 

  40. Roychoudhury P, Kaushik BD (1986) Response of cyanobacterial growth and nitrogen fixation to herbicides. Phykos 25:36–43

    CAS  Google Scholar 

  41. Prasad SM, Kumar D, Zeeshan M (2005) Growth, photosynthesis, active oxygen species and antioxidants responses of paddy field cynobacterium Plectonema boryanum to endosulfan stress. J Gen Appl Microbiol 51:115–123

    Article  CAS  Google Scholar 

  42. Kumar S, Jetley UK, Fatma T (2004) Tolerance of Spirulina platensis-S5 and anabaena sp. to Endosulfan an organochlorine pesticide. Ann Plant Physiol 18(2):103–107

    Google Scholar 

  43. Mansour FA, Soliman ARI, Shaaban-Desouki SA, Hussein MH (1994) Effect of herbicides on cyanobacteria. I. Changes in carbohydrate content, Pmase and GOT activities in Nostoc kihlmani and Anabaena oscillarioides. Phykos 33:153–162

    CAS  Google Scholar 

  44. Yan GA, Yan X, Wu W (1997) Effect of herbicide Molinate on mixotrophic growth, photosynthetic pigments and protein content of Anabaena sphaerica under different light conditions. Ecotoxicol Environ Saf 38:144–149

    Article  CAS  Google Scholar 

  45. Bhunia AK, Basu NK, Roy D, Chakrabarti A, Banerjee SK (1991) Growth, chlorophyll a content, nitrogen fixing ability and certain metabolic activities of N. muscorum: effect of methylparathion and benthiocarb. Bull Environ Contam Toxicol 47:43–50

    Article  CAS  Google Scholar 

  46. Babu GS, Hans RK, Singh J, Viswanathan PN, Joshi PC (2001) Effect of lindane on the growth and metabolic activities of cyanobacteria. Ecotoxicol Environ Saf 48:219–221

    Article  Google Scholar 

  47. Leitao M, das A, Cardozo KHM, Pinto E, Colepicolo P (2003) PCB induced oxidative stress in the unicellular marine dinoflagellates Lingulodinium polyedrum. Arch Environ Comtam Toxicol 45:59–65

    Article  CAS  Google Scholar 

  48. Orus MI, Marco E (1991) Heterocysts structure alteration and oxygen-mediated inhibition of dinitrogen fixation by trichlorfon in Anabaena 7119. J Exp Bot 95:1595–1600

    Article  Google Scholar 

  49. Vaishampayan A (1984) Biological effects of rice-field herbicide Monuron on a nitrogen-fixing cyanobacterium Nostoc muscorum. Microbios Lett 28:105–111

    Google Scholar 

  50. Mishra AK, Pandey AB (1989) Toxicity of three herbicides to some nitrogen- fixing cyanobacetria. Ecotoxicol Environ Saf 17:236–246

    Article  CAS  Google Scholar 

  51. Vijayakumar S (2012) Potentialapplicationsofcyanobacteriainindustrial effluents-a review. J Bioremed Biodegr 3:1–6

    Google Scholar 

  52. El-Bestawy EA, AbdEl-Salam AZ, Mansy AERH (2007) Potential use of environmental cyanobacterial species in bioremediation on lindane-contaminated effluents. Int Biodeterior Biodegrad 59:180–192

    Article  CAS  Google Scholar 

  53. Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical basis for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456

    Article  CAS  Google Scholar 

  54. Lipok J, Wieczorek D, Jewginski M, Kafarski P (2009) Prospects of in vivo 31PNMR methoding lyphosate degradation studies in whole cell system. Enzym Microb Technol 44:11–16

    Article  CAS  Google Scholar 

  55. Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529. https://doi.org/10.3389/fmicb.2016.00529

    Article  Google Scholar 

  56. Mohapatra PK, Mohanty RC (1992) Growth pattern changes of chlorella vulgaris and anabaena dolilum due to toxicity of dimethoate and endosulfan. Bull Environ Contam Toxicol 49:576–581

    Article  CAS  Google Scholar 

  57. Abou-Waly H, Abou-Setta MM, Nigg HN, Mallory LL (1991) Growth response of freshwas algae, Anabaena flos-aquae and Selenastrum capricornutum to atrazine and hexazinone herbicide. Bull Environ Contam Toxicol 46:223–229

    Article  CAS  Google Scholar 

  58. Sutherland TD, Horne I, Lacey MJ, Harcourt RL, Russell RJ, Oakeshott JG (2000) Enrichment of an endosulfan- degrading mixed bacterial culture. Appl Environ Microbiol 66:2822–2828

    Article  CAS  Google Scholar 

  59. Science Daily (2009, March 12) http://www.sciencedaily.com/releases/2009/03/090306084639.htm

Download references

Acknowledgments

The research was supported by Grant DBT-WB (103-Bt/(Estt)/RD/2011-2012) and SERB-DST India (SB/YS/LS-76/2014) to MD. The author is thankful to Dr. P. Bhadury, Department of Biological Sciences, IISER Kolkata, for support and encouragement. The author is thankful to the Head, Department of Botany Hooghly Mohsin College, for necessary support to conduct the study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debnath, M. (2019). Insecticide Toxicity on Indigenous Cyanobacteria from Alluvial Rice Fields. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_11

Download citation

Publish with us

Policies and ethics