Skip to main content

Implications of Microbes in Forensic DNA Fingerprinting

  • Chapter
  • First Online:
DNA Fingerprinting: Advancements and Future Endeavors

Abstract

It was the human genomic and mitochondrial DNA which was used in DNA fingerprinting in forensic case studies. However, many of the time, the human DNA is not available for analysis due to many reasons, so additional biomarker may be of immense help for forensic scientists. The microbiome analysis appears to hold that promise, and several research publications are suggestive of the use of microbial fingerprint to link an individual with the object. The microbiome which is basically microbes harbouring humans is analysed using DNA tools. In microbiome analysis, the samples are subjected to DNA extraction, amplification, parallel sequencing of the 16S rRNA region and analysis. Many studies showed that the individual person has a unique microbial fingerprint which makes them distinct in the population. The microbial population could be studied to understand the geographic location, post-mortem interval application, nature of transmission and cause of death including the establishing individual identity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Bray D, Lewis J, Roff M, Roberts K, Watson JD (1994) Molecular biology of cell. Garland Publishing, New York

    Google Scholar 

  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Atlas RM (1984) Diversity of microbial communities. Adv Microbial Ecol 7:1–47

    Google Scholar 

  4. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archael diversity detected in Yellowstone National Park hot spring environment. Proc Natl Acad Sci 91:1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bizzarro S, Loos BG, Laine ML, Crielaard W, Zaura E (2013) Subgingival microbiome in smokers and non-smokers in periodontitis: an exploratory study using traditional targeted techniques and a next-generation sequencing. J Clin Periodontol 40:483–492. https://doi.org/10.1111/jcpe.12087

    Article  CAS  PubMed  Google Scholar 

  6. Blaser MJ (2010) Harnessing the power of the human microbiome. Proc Natl Acad Sci 107(14):6125–6126

    Article  CAS  Google Scholar 

  7. Casarin RCV, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, Duarte PM, Casati MZ, Gonçalves RB (2013) Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res 48:30–36. https://doi.org/10.1111/j.1600-0765.2012.01498.x

    Article  CAS  PubMed  Google Scholar 

  8. Clarke TH et al (2017) Integrating the microbiome as a resource in the forensics toolkit. Forensic Sci Int Genet 30:141–147

    Article  CAS  PubMed  Google Scholar 

  9. Costello EK et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dassarma S, Fleischmann EF (1995) Archea: a laboratory manual – halophiles. Cold Springer Harbour Laboratory Press, New York, pp 269–272

    Google Scholar 

  11. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  12. Elwood HJ, Olsen GJ, Sogin ML (1985) The small subunit rRNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2:399

    CAS  PubMed  Google Scholar 

  13. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105:17994–17999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459(7244):193–199

    Article  CAS  PubMed  Google Scholar 

  15. Gao Z, Tseng CH, Pei ZH, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104:2927–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gillis PBM, De Leg J (1992) The genus Aquaspirillum. In: Balows A, truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacterial ecophysiology, isolation, identification, applications. Springer-Verlag, New York, pp 2569–2582

    Google Scholar 

  17. Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11(5):759–769

    Article  CAS  PubMed  Google Scholar 

  18. Grice EA, et al.; NISC Comparative Sequencing Program (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gunn A, Pitt SJ (2012) Review paper microbes as forensic indicators. Trop Biomed 29:311–330

    Google Scholar 

  20. Hagstrem A, Pommier T, Fohwer F, Simu K, Stolle W, Svensson D, Zweifel UL (2002) Use of 16S rDNA for delineation of marine bacterioplankton species. Appl Environ Microbiol 68:3628–3633

    Article  Google Scholar 

  21. Hewitt KM, Gerba CP, Maxwell SL, Kelley ST (2012) Office space bacterial abundance and diversity in three metropolitan areas. PLoS One 7:e37849. https://doi.org/10.1371/journal.pone.0037849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. http://people.com/archive/act-of-revenge-vol-51-no-19/

  23. http://www.newsweek.com/deadly-attraction-177422

  24. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  Google Scholar 

  26. Kolganova TV, Kuznetsov BB, Tourova TP (2002) Designing and testing oligonucleotide primers for amplification and sequencing of Archaeal 16S rRNA genes. Mikrobiologiya 71:283–286

    CAS  Google Scholar 

  27. Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G (2014) Shaping the oral microbiota through intimate kissing. Microbiome 2:41. https://doi.org/10.1186/2049-2618-2-41

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krishna P, Reddy MS, Satyanarayana T (2006) Molecular techniques for understanding the microbial community structure in Mycorrhizosphere. Microbial activity in the rhizosphere. Springer, Berlin/Heidelberg, pp 173–198

    Google Scholar 

  29. Lewin B (2000) Genes VII. Oxford University Press Inc., New York

    Google Scholar 

  30. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  CAS  PubMed  Google Scholar 

  32. Luongo JC, Barberán A, Hacker-Cary R, Morgan EE, Miller SL, Fierer N (2016) Microbial analyses of airborne dust collected from dormitory rooms predict the sex of occupants. Indoor Air 27:338–344. https://doi.org/10.1111/ina.12302

    Article  CAS  PubMed  Google Scholar 

  33. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  34. Martinez-Murcia AJ, Acinas SG, Rodriguez-Valera F (1995) Evalution of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol Ecol 17:247–256

    Article  CAS  Google Scholar 

  35. Metzker ML et al (2002) Molecular evidence of HIV-1 transmission in a criminal case. Proc Natl Acad Sci 99(22):14292–14297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller OL (1981) The nucleolus, chromosomes and visualization of genetic activity. J Cell Biol 91:15s–27s

    Article  PubMed  Google Scholar 

  37. Misic AM, Davis MF, Tyldsley AS, Hodkinson BP, Tolomeo P, Hu B, Nachamkin I, Lautenbach E, Morris DO, Grice EA (2015) The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites. Microbiome 3:2. https://doi.org/10.1186/s40168-014-0052-7

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moon JH, Lee JH, Lee JY (2015) Subgingival microbiome in smokers and nonsmokers in Korean chronic periodontitis patients. Mol Oral Microbiol 30:227–241. https://doi.org/10.1111/omi.12086

    Article  CAS  PubMed  Google Scholar 

  39. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  40. Nielsen AT, Liu W-T, Filipe C, Grady L, Molin S, Stahl DA (1999) Identification of a novel group of bacteria in a sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pace NR, Stahl DA, DJ L, Olsen GJ (1985) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12

    Google Scholar 

  42. Pitt SJ, Cunningham JM (2009) An introduction to biomedical science in clinical and professional practice. Wiley-Blackwell, Chichester

    Google Scholar 

  43. Prosser, J. A. 2002. Molecular functional diversity in soil micro-organisms. In Diversity and integration in mycorrhizas, S. A. Smith and F. A. Smith, Kluwer Academic Publishers, Dordrecht 9–17

    Chapter  Google Scholar 

  44. Rodriguez-Valera F (2002) Approaches to prokaryotic biodiversity: a population genetics perspective. Environ Microbiol 4:628–633

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez-Valera F (2004) Environmental genomics, the big picture? FEMS Microbiol Lett 231:153–158

    Article  CAS  PubMed  Google Scholar 

  46. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 4:303–310

    Article  Google Scholar 

  47. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458. https://doi.org/10.7554/eLife.00458

    Article  PubMed  PubMed Central  Google Scholar 

  48. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17(3-4):170–178

    Article  CAS  Google Scholar 

  49. van Dijk EL et al (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426

    Article  PubMed  Google Scholar 

  50. Viaud M, Pasquier A, Brygoo Y (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104:1027–1032

    Article  CAS  Google Scholar 

  51. Vitkup D et al (2001) Completeness in structural genomics. Nat Struct Mol Biol 8(6):559

    Google Scholar 

  52. Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify 16S rDNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262

    Article  CAS  PubMed  Google Scholar 

  53. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Williams SM, Robbins LG (1992) Molecular genetic analysis of drosophila rDNA arrays. Trends Gent 8:335–340

    Article  CAS  Google Scholar 

  55. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221

    Google Scholar 

  56. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microbiol Cell Fact 4:8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Krishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishna, P. (2018). Implications of Microbes in Forensic DNA Fingerprinting. In: Dash, H., Shrivastava, P., Mohapatra, B., Das, S. (eds) DNA Fingerprinting: Advancements and Future Endeavors. Springer, Singapore. https://doi.org/10.1007/978-981-13-1583-1_18

Download citation

Publish with us

Policies and ethics