Skip to main content

Genomic Analysis of Lactic Acid Bacteria and Their Applications

  • Chapter
  • First Online:
Lactic Acid Bacteria in Foodborne Hazards Reduction

Abstract

Lactic acid bacteria (LABs) comprise a group of Gram-positive, rod- or cocci-shaped, and low G + C content bacteria with common metabolic and physiological characteristics. The association of LAB with food fermentation can be traced back to the early nineteenth century. As the “milk-souring organisms,” they produce lactic acid as one of their main metabolic end products (Orla-Jensen, The lactic acid bacteria, (D Kgl danske vidensk Selsk Skrifter Naturv og mathematisk Afd, 8 Række, vol 2 ). A. F. Høst, Københaven, 1919). The classical phenotype-based identification of LAB is not always reliable because the phenotype could be subject to the environmental variations. As a more reliable identification method, nucleic acid probe was applied for genotypic tests (Salama M, Sandine W, Giovannoni S, Appl Environ Microbiol 57(5):1313–1318, 1991). The 16 s or 23 s rRNA probes with specific sequences on a phylogenetic basis were both practical and reliable approach to identify LAB in the 1990s (Schleifer KH, Ehrmann M, Beimfohr C, Brockmann E, Ludwig W, Amann R, Int Dairy J 5(8):1081–1094. https://doi.org/10.1016/0958-6946(95)00047-X, 1995). With the advancement of sequencing technology and sequence database, LAB genome analyses using sequencing technologies and bioinformatics have not only revolutionized the characterization of lactic acid bacteria but also had a huge impact on interpreting its functional and ecological diversity. This chapter will focus on new development of DNA sequencing, gene-based technologies, and its implication on LAB for the scientific and industry fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abs El-Osta, Y.G., A.J. Hillier, B.E. Davidson, and M. Dobos. 2002. Pulsed-field gel electrophoretic analysis of the genome of Lactobacillus gasseri ATCC33323, and construction of a physical map. Electrophoresis 23 (19): 3321–3331. https://doi.org/10.1002/1522-2683(200210)23:19<3321::AID-ELPS3321>3.0.CO;2-G.

    Article  PubMed  Google Scholar 

  • Acar, J., and B. Rostel. 2001. Antimicrobial resistance: An overview. Revue Scientifique et Technique 20 (3): 797–810.

    Article  CAS  Google Scholar 

  • Ainsworth, S., S. Stockdale, F. Bottacini, J. Mahony, and D. van Sinderen. 2014. The Lactococcus lactis plasmidome: Much learnt, yet still lots to discover. FEMS Microbiology Reviews 38 (5): 1066–1088. https://doi.org/10.1111/1574-6976.12074.

    Article  CAS  PubMed  Google Scholar 

  • Akcelik, M., and N. Tunail. 1992. A 30 kDa cell wall protein produced by plasmid DNA which encodes inhibition of phage adsorption in Lactococcus lactis ssp lactis P25. Milchwissenschaft 47: 215–217.

    CAS  Google Scholar 

  • Ammor, M.S., A.B. Florez, and B. Mayo. 2007. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology 24 (6): 559–570. https://doi.org/10.1016/j.fm.2006.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Amorim, A.M.B., and J.D.S. Nascimento. 2017. A highlight for non-Escherichia coli and non-Salmonella sp. enterobacteriaceae in dairy foods contamination. Frontiers in Microbiology 8: 930. https://doi.org/10.3389/fmicb.2017.00930.

    Article  PubMed  PubMed Central  Google Scholar 

  • Azcarate-Peril, M.A., E. Altermann, Y.J. Goh, R. Tallon, R.B. Sanozky-Dawes, E.A. Pfeiler, S. O’Flaherty, B.L. Buck, A. Dobson, T. Duong, M.J. Miller, R. Barrangou, and T.R. Klaenhammer. 2008. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Applied and Environmental Microbiology 74 (15): 4610–4625. https://doi.org/10.1128/AEM.00054-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baurand, P.E., N. Capelli, and A. de Vaufleury. 2015. Genotoxicity assessment of pesticides on terrestrial snail embryos by analysis of random amplified polymorphic DNA profiles. Journal of Hazardous Materials 298: 320–327. https://doi.org/10.1016/j.jhazmat.2015.05.051.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, P.M. 2008. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. British Journal of Pharmacology 153 (Suppl 1): S347–S357. https://doi.org/10.1038/sj.bjp.0707607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley, D.R., S. Balasubramanian, H.P. Swerdlow, G.P. Smith, J. Milton, C.G. Brown, K.P. Hall, D.J. Evers, C.L. Barnes, H.R. Bignell, J.M. Boutell, J. Bryant, R.J. Carter, R. Keira Cheetham, A.J. Cox, D.J. Ellis, M.R. Flatbush, N.A. Gormley, S.J. Humphray, L.J. Irving, M.S. Karbelashvili, S.M. Kirk, H. Li, X. Liu, K.S. Maisinger, L.J. Murray, B. Obradovic, T. Ost, M.L. Parkinson, M.R. Pratt, I.M. Rasolonjatovo, M.T. Reed, R. Rigatti, C. Rodighiero, M.T. Ross, A. Sabot, S.V. Sankar, A. Scally, G.P. Schroth, M.E. Smith, V.P. Smith, A. Spiridou, P.E. Torrance, S.S. Tzonev, E.H. Vermaas, K. Walter, X. Wu, L. Zhang, M.D. Alam, C. Anastasi, I.C. Aniebo, D.M. Bailey, I.R. Bancarz, S. Banerjee, S.G. Barbour, P.A. Baybayan, V.A. Benoit, K.F. Benson, C. Bevis, P.J. Black, A. Boodhun, J.S. Brennan, J.A. Bridgham, R.C. Brown, A.A. Brown, D.H. Buermann, A.A. Bundu, J.C. Burrows, N.P. Carter, N. Castillo, E. Catenazzi, M. Chiara, S. Chang, R. Neil Cooley, N.R. Crake, O.O. Dada, K.D. Diakoumakos, B. Dominguez-Fernandez, D.J. Earnshaw, U.C. Egbujor, D.W. Elmore, S.S. Etchin, M.R. Ewan, M. Fedurco, L.J. Fraser, K.V. Fuentes Fajardo, W. Scott Furey, D. George, K.J. Gietzen, C.P. Goddard, G.S. Golda, P.A. Granieri, D.E. Green, D.L. Gustafson, N.F. Hansen, K. Harnish, C.D. Haudenschild, N.I. Heyer, M.M. Hims, J.T. Ho, A.M. Horgan, K. Hoschler, S. Hurwitz, D.V. Ivanov, M.Q. Johnson, T. James, T.A. Huw Jones, G.D. Kang, T.H. Kerelska, A.D. Kersey, I. Khrebtukova, A.P. Kindwall, Z. Kingsbury, P.I. Kokko-Gonzales, A. Kumar, M.A. Laurent, C.T. Lawley, S.E. Lee, X. Lee, A.K. Liao, J.A. Loch, M. Lok, S. Luo, R.M. Mammen, J.W. Martin, P.G. McCauley, P. McNitt, P. Mehta, K.W. Moon, J.W. Mullens, T. Newington, Z. Ning, B. Ling Ng, S.M. Novo, M.J. O’Neill, M.A. Osborne, A. Osnowski, O. Ostadan, L.L. Paraschos, L. Pickering, A.C. Pike, A.C. Pike, D. Chris Pinkard, D.P. Pliskin, J. Podhasky, V.J. Quijano, C. Raczy, V.H. Rae, S.R. Rawlings, A. Chiva Rodriguez, P.M. Roe, J. Rogers, M.C. Rogert Bacigalupo, N. Romanov, A. Romieu, R.K. Roth, N.J. Rourke, S.T. Ruediger, E. Rusman, R.M. Sanches-Kuiper, M.R. Schenker, J.M. Seoane, R.J. Shaw, M.K. Shiver, S.W. Short, N.L. Sizto, J.P. Sluis, M.A. Smith, J. Ernest Sohna Sohna, E.J. Spence, K. Stevens, N. Sutton, L. Szajkowski, C.L. Tregidgo, G. Turcatti, S. Vandevondele, Y. Verhovsky, S.M. Virk, S. Wakelin, G.C. Walcott, J. Wang, G.J. Worsley, J. Yan, L. Yau, M. Zuerlein, J. Rogers, J.C. Mullikin, M.E. Hurles, N.J. McCooke, J.S. West, F.L. Oaks, P.L. Lundberg, D. Klenerman, R. Durbin, and A.J. Smith. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456 (7218): 53–59. https://doi.org/10.1038/nature07517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biesebeke, Te, Rolf Boesten Rob, Eline S. Klaassen, Carien C.G.M. Booijink, Maaike C. De Vries, Muriel Derrien, David P.A. Cohen, Frank Schuren, Elaine E. Vaughan, and Michiel Kleerebezem. 2004. Microbial functionality in the human gastrointestinal tract. Microbes and Environments 19 (4): 276–280.

    Article  Google Scholar 

  • Blasco, L., S. Ferrer, and I. Pardo. 2003. Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiology Letters 225 (1): 115–123.

    Article  CAS  Google Scholar 

  • Bolotin, A., S. Mauger, K. Malarme, S.D. Ehrlich, and A. Sorokin. 1999. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek 76 (1–4): 27–76.

    Article  CAS  Google Scholar 

  • Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S.D. Ehrlich, and A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research 11 (5): 731–753. https://doi.org/10.1101/gr.169701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bove, C.G., C. Lazzi, V. Bernini, B. Bottari, E. Neviani, and M. Gatti. 2011. cDNA-amplified fragment length polymorphism to study the transcriptional responses of Lactobacillus rhamnosus growing in cheese-like medium. Journal of Applied Microbiology 111 (4): 855–864. https://doi.org/10.1111/j.1365-2672.2011.05101.x.

    Article  CAS  PubMed  Google Scholar 

  • Bronzwaer, S.L., O. Cars, U. Buchholz, S. Molstad, W. Goettsch, I.K. Veldhuijzen, J.L. Kool, M.J. Sprenger, J.E. Degener, and System European Antimicrobial Resistance Surveillance. 2002. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerging Infectious Diseases 8 (3): 278–282. https://doi.org/10.3201/eid0803.010192.

    Article  Google Scholar 

  • Busconi, M., S. Reggi, and C. Fogher. 2008. Evaluation of biodiversity of lactic acid bacteria microbiota in the calf intestinal tracts. Antonie Van Leeuwenhoek 94 (2): 145–155. https://doi.org/10.1007/s10482-008-9220-8.

    Article  CAS  PubMed  Google Scholar 

  • Campana, Raffaella, Saskia van Hemert, and Wally Baffone. 2017. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathogens 9 (1): 12.

    Article  Google Scholar 

  • Carmen Collado, M., and M. Hernandez. 2007. Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiological Research 162 (1): 86–92. https://doi.org/10.1016/j.micres.2006.09.007.

    Article  CAS  PubMed  Google Scholar 

  • Ceapa, C., J. Lambert, K. van Limpt, M. Wels, T. Smokvina, J. Knol, and M. Kleerebezem. 2015. Correlation of Lactobacillus rhamnosus genotypes and carbohydrate utilization signatures determined by phenotype profiling. Applied and Environmental Microbiology 81 (16): 5458–5470. https://doi.org/10.1128/AEM.00851-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassy, B.M., E. Gibson, and A. Giuffrida. 1976. Evidence for extrachromosomal elements in Lactobacillus. Journal of Bacteriology 127 (3): 1576–1578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Y., T. Hu, X. Qu, L. Zhang, Z. Ding, and A. Dong. 2015. Plasmids from food lactic acid bacteria: Diversity, similarity, and new developments. International Journal of Molecular Sciences 16 (6): 13172–13202. https://doi.org/10.3390/ijms160613172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vos, W.M., and J. Hugenholtz. 2004. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends in Biotechnology 22 (2): 72–79. https://doi.org/10.1016/j.tibtech.2003.11.011.

    Article  CAS  PubMed  Google Scholar 

  • De Wolf, H., R. Blust, and T. Backeljau. 2004. The use of RAPD in ecotoxicology. Mutation Research 566 (3): 249–262. https://doi.org/10.1016/j.mrrev.2003.10.003.

    Article  CAS  PubMed  Google Scholar 

  • Devirgiliis, C., S. Barile, A. Caravelli, D. Coppola, and G. Perozzi. 2010. Identification of tetracycline- and erythromycin-resistant Gram-positive cocci within the fermenting microflora of an Italian dairy food product. Journal of Applied Microbiology 109 (1): 313–323. https://doi.org/10.1111/j.1365-2672.2010.04661.x.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Sanchez, S., I. Hanning, S. Pendleton, and D. D’Souza. 2013. Next-generation sequencing: The future of molecular genetics in poultry production and food safety. Poultry Science 92 (2): 562–572. https://doi.org/10.3382/ps.2012-02741.

    Article  CAS  PubMed  Google Scholar 

  • Diep, D.B., G. Mathiesen, V.G. Eijsink, and I.F. Nes. 2009. Use of lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery. Current Pharmaceutical Biotechnology 10 (1): 62–73.

    Article  CAS  Google Scholar 

  • Dinan, Timothy G., and John F. Cryan. 2017. Gut-brain axis in 2016: Brain-gut-microbiota axis [mdash] mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology 14 (2): 69–70.

    Article  CAS  Google Scholar 

  • Donati, C., N.L. Hiller, H. Tettelin, A. Muzzi, N.J. Croucher, S.V. Angiuoli, M. Oggioni, J.C. Dunning Hotopp, F.Z. Hu, D.R. Riley, A. Covacci, T.J. Mitchell, S.D. Bentley, M. Kilian, G.D. Ehrlich, R. Rappuoli, E.R. Moxon, and V. Masignani. 2010. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biology 11 (10): R107. https://doi.org/10.1186/gb-2010-11-10-r107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas, G.L., Y.J. Goh, and T.R. Klaenhammer. 2011. Integrative food grade expression system for lactic acid bacteria. Methods in Molecular Biology 765: 373–387. https://doi.org/10.1007/978-1-61779-197-0_22.

    Article  CAS  PubMed  Google Scholar 

  • Douillard, F.P., and W.M. de Vos. 2014. Functional genomics of lactic acid bacteria: From food to health. Microbial Cell Factories 13 (Suppl 1): S8. https://doi.org/10.1186/1475-2859-13-S1-S8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doulgeraki, A.I., S. Paramithiotis, D.M. Kagkli, and G.J. Nychas. 2010. Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiology 27 (8): 1028–1034. https://doi.org/10.1016/j.fm.2010.07.004.

    Article  PubMed  Google Scholar 

  • Feld, L., S. Schjorring, K. Hammer, T.R. Licht, M. Danielsen, K. Krogfelt, and A. Wilcks. 2008. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. The Journal of Antimicrobial Chemotherapy 61 (4): 845–852. https://doi.org/10.1093/jac/dkn033.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, S.G., and L.S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proceedings of the National Academy of Sciences of the United States of America 80 (6): 1579–1583.

    Article  CAS  Google Scholar 

  • Forde, A., and G.F. Fitzgerald. 1999. Bacteriophage defence systems in lactic acid bacteria. Antonie Van Leeuwenhoek 76 (1–4): 89–113.

    Article  CAS  Google Scholar 

  • Forsman, M., G. Sandstrom, and B. Jaurin. 1990. Identification of Francisella species and discrimination of type A and type B strains of F. tularensis by 16S rRNA analysis. Applied and Environmental Microbiology 56 (4): 949–955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Froseth, B.R., and L.L. McKay. 1991. Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Applied and Environmental Microbiology 57 (3): 804–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller, R. 1989. Probiotics in man and animals. The Journal of Applied Bacteriology 66 (5): 365–378.

    Article  CAS  Google Scholar 

  • Gao, X.Y., X.Y. Zhi, H.W. Li, H.P. Klenk, and W.J. Li. 2014. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One 9 (6): e101229. https://doi.org/10.1371/journal.pone.0101229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo, C., G. Silvestri, L. Aquilanti, and F. Clementi. 2008. PCR-DGGE analysis of lactic acid bacteria and yeast dynamics during the production processes of three varieties of Panettone. Journal of Applied Microbiology 105 (1): 243–254. https://doi.org/10.1111/j.1365-2672.2008.03768.x.

    Article  CAS  PubMed  Google Scholar 

  • Garvey, P., C. Hill, and G.F. Fitzgerald. 1996. The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Applied and Environmental Microbiology 62 (2): 676–679.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasson, M.J. 1990. In vivo genetic systems in lactic acid bacteria. FEMS Microbiology Reviews 7 (1–2): 43–60.

    Article  CAS  Google Scholar 

  • Guarcello, R., M. De Angelis, L. Settanni, S. Formiglio, R. Gaglio, F. Minervini, G. Moschetti, and M. Gobbetti. 2016. Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines. Applied and Environmental Microbiology 82 (23): 6870–6880. https://doi.org/10.1128/AEM.01051-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, P.K. 2008. Single-molecule DNA sequencing technologies for future genomics research. Trends in Biotechnology 26 (11): 602–611. https://doi.org/10.1016/j.tibtech.2008.07.003.

    Article  CAS  PubMed  Google Scholar 

  • Harmsen, Hermie J.M., Peter Elfferich, Frits Schut, and Gjalt W. Welling. 1999. A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microbial Ecology in Health and Disease 11 (1): 3–12.

    Article  Google Scholar 

  • Heijtz, Rochellys Diaz, Shugui Wang, Farhana Anuar, Qian Yu, Britta Björkholm, Annika Samuelsson, Martin L. Hibberd, Hans Forssberg, and Sven Pettersson. 2011. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences 108 (7): 3047–3052.

    Article  CAS  Google Scholar 

  • Heilig, H.G., E.G. Zoetendal, E.E. Vaughan, P. Marteau, A.D. Akkermans, and W.M. de Vos. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Applied and Environmental Microbiology 68 (1): 114–123.

    Article  CAS  Google Scholar 

  • Herschleb, J., G. Ananiev, and D.C. Schwartz. 2007. Pulsed-field gel electrophoresis. Nature Protocols 2 (3): 677–684. https://doi.org/10.1038/nprot.2007.94.

    Article  CAS  PubMed  Google Scholar 

  • Heyman, M. 2000. Effect of lactic acid bacteria on diarrheal diseases. Journal of the American College of Nutrition 19 (2 Suppl): 137S–146S.

    Article  CAS  Google Scholar 

  • Honda, K., M. Moto, N. Uchida, F. He, and N. Hashizume. 2012. Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition 51 (2): 96–101. https://doi.org/10.3164/jcbn.11-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J., T. Wei, S. Sun, A. Zhao, and C. Xu. 2015. Effects of cigarette smoke condensate on the production and characterization of exopolysaccharides by Bifidobacterium. Anais da Academia Brasileira de Ciências 87 (2): 997–1005. https://doi.org/10.1590/0001-3765201520140518.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, D.E., V. Klepac-Ceraj, S.G. Acinas, C. Gautier, S. Bertilsson, and M.F. Polz. 2006. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Applied and Environmental Microbiology 72 (3): 2221–2225. https://doi.org/10.1128/AEM.72.3.2221-2225.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Human Genome Sequencing, Consortium. 2004. Finishing the euchromatic sequence of the human genome. Nature 431 (7011): 931–945. https://doi.org/10.1038/nature03001.

    Article  CAS  Google Scholar 

  • Jones, R.J. 2004. Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. International Journal of Food Microbiology 90 (3): 273–282.

    Article  Google Scholar 

  • Kafshdooz, Taiebeh, Abolfazl Akbarzadeh, Abbas Majdi Seghinsara, Hamid Tayefi Nasrabadi, and Morteza Milani. 2017. Role of probiotics in managing of Helicobacter pylori infection: A review. Drug Research 67 (02): 88–93.

    CAS  PubMed  Google Scholar 

  • Karamali, M., F. Dadkhah, M. Sadrkhanlou, M. Jamilian, S. Ahmadi, M. Tajabadi-Ebrahimi, P. Jafari, and Z. Asemi. 2016. Effects of probiotic supplementation on glycaemic control and lipid profiles in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Diabetes & Metabolism 42 (4): 234–241. https://doi.org/10.1016/j.diabet.2016.04.009.

    Article  CAS  Google Scholar 

  • Kaufmann, M.E. 1998. Pulsed-field gel electrophoresis. Methods in Molecular Medicine 15: 33–50. https://doi.org/10.1385/0-89603-498-4:33.

    Article  CAS  PubMed  Google Scholar 

  • Ke, R., M. Mignardi, T. Hauling, and M. Nilsson. 2016. Fourth generation of next-generation sequencing technologies: Promise and consequences. Human Mutation 37 (12): 1363–1367. https://doi.org/10.1002/humu.23051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelleher, P., F. Bottacini, J. Mahony, K.N. Kilcawley, and D. van Sinderen. 2017. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genomics 18 (1): 267. https://doi.org/10.1186/s12864-017-3650-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaenhammer, T.R., and R.B. Sanozky. 1985. Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: Evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. Journal of General Microbiology 131 (6): 1531–1541. https://doi.org/10.1099/00221287-131-6-1531.

    Article  CAS  PubMed  Google Scholar 

  • Klare, I., C. Konstabel, G. Werner, G. Huys, V. Vankerckhoven, G. Kahlmeter, B. Hildebrandt, S. Muller-Bertling, W. Witte, and H. Goossens. 2007. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. The Journal of Antimicrobial Chemotherapy 59 (5): 900–912. https://doi.org/10.1093/jac/dkm035.

    Article  CAS  PubMed  Google Scholar 

  • Klijn, N., A.H. Weerkamp, and W.M. de Vos. 1991. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Applied and Environmental Microbiology 57 (11): 3390–3393.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs, B. 2016. Prebiotic and synbiotic treatment before colorectal surgery—Randomised double blind trial. Collegium Antropologicum 40 (1): 35–40.

    CAS  PubMed  Google Scholar 

  • Labrie, S., C. Bart, C. Vadeboncoeur, and S. Moineau. 2005. Use of an alpha-galactosidase gene as a food-grade selection marker for Streptococcus thermophilus. Journal of Dairy Science 88 (7): 2341–2347. https://doi.org/10.3168/jds.S0022-0302(05)72912-X.

    Article  CAS  PubMed  Google Scholar 

  • Labrie, S.J., J.E. Samson, and S. Moineau. 2010. Bacteriophage resistance mechanisms. Nature Reviews. Microbiology 8 (5): 317–327. https://doi.org/10.1038/nrmicro2315.

    Article  CAS  PubMed  Google Scholar 

  • Lamei, S., Y.O. Hu, T.C. Olofsson, A.F. Andersson, E. Forsgren, and A. Vasquez. 2017. Improvement of identification methods for honeybee specific Lactic Acid Bacteria; future approaches. PLoS One 12 (3): e0174614. https://doi.org/10.1371/journal.pone.0174614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander, E.S., L.M. Linton, B. Birren, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409 (6822): 860–921. https://doi.org/10.1038/35057062.

    Article  CAS  PubMed  Google Scholar 

  • Landete, J.M. 2017. A review of food-grade vectors in lactic acid bacteria: From the laboratory to their application. Critical Reviews in Biotechnology 37 (3): 296–308. https://doi.org/10.3109/07388551.2016.1144044.

    Article  CAS  PubMed  Google Scholar 

  • Langer-Safer, P.R., M. Levine, and D.C. Ward. 1982. Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America 79 (14): 4381–4385.

    Article  CAS  Google Scholar 

  • Lee, Chien-Ying, Hung-Che Shih, Min-Chien Yu, Ming-Yung Lee, Ya-Lan Chang, Ya-Yun Lai, Yi-Ching Lee, Yu-Hsiang Kuan, and Chun-Che Lin. 2017. Evaluation of the potential inhibitory activity of a combination of L. acidophilus, L. rhamnosus and L. sporogenes on Helicobacter pylori: A randomized double-blind placebo-controlled clinical trial. Chinese Journal of Integrative Medicine 23 (3): 176–182.

    Article  Google Scholar 

  • Leite, A.M., M.A. Miguel, R.S. Peixoto, P. Ruas-Madiedo, V.M. Paschoalin, B. Mayo, and S. Delgado. 2015. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. Journal of Dairy Science 98 (6): 3622–3632. https://doi.org/10.3168/jds.2014-9265.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, M.G., and W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews 58 (3): 563–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucey, M., C. Daly, and G.F. Fitzgerald. 1992. Cell-surface characteristics of Lactococcus-lactis harboring Pci528, a 46 kb plasmid encoding inhibition of bacteriophage adsorption. Journal of General Microbiology 138: 2137–2143.

    Article  CAS  Google Scholar 

  • Ludwig, W., and K.H. Schleifer. 1994. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiology Reviews 15 (2–3): 155–173.

    Article  CAS  Google Scholar 

  • Machado, A., C. Almeida, A. Carvalho, F. Boyen, F. Haesebrouck, L. Rodrigues, N. Cerca, and N.F. Azevedo. 2013. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. International Journal of Food Microbiology 162 (1): 64–70. https://doi.org/10.1016/j.ijfoodmicro.2012.09.024.

    Article  CAS  PubMed  Google Scholar 

  • Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, M.S. Braverman, Y.J. Chen, Z. Chen, S.B. Dewell, L. Du, J.M. Fierro, X.V. Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho, G.P. Irzyk, S.C. Jando, M.L. Alenquer, T.P. Jarvie, K.B. Jirage, J.B. Kim, J.R. Knight, J.R. Lanza, J.H. Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L. Lohman, H. Lu, V.B. Makhijani, K.E. McDade, M.P. McKenna, E.W. Myers, E. Nickerson, J.R. Nobile, R. Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simpson, M. Srinivasan, K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang, Y. Wang, M.P. Weiner, P. Yu, R.F. Begley, and J.M. Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437 (7057): 376–380. https://doi.org/10.1038/nature03959.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur, S., and R. Singh. 2005. Antibiotic resistance in food lactic acid bacteria—A review. International Journal of Food Microbiology 105 (3): 281–295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, K., N. Ishii, and Z. Kawabata. 2003. Release of extracellular transformable plasmid DNA from Escherichia coli cocultivated with algae. Applied and Environmental Microbiology 69 (4): 2399–2404.

    Article  CAS  Google Scholar 

  • McCarthy, A. 2010. Third generation DNA sequencing: pacific biosciences’ single molecule real time technology. Chemistry & Biology 17 (7): 675–676. https://doi.org/10.1016/j.chembiol.2010.07.004.

    Article  CAS  Google Scholar 

  • Mehta, Varshil, Kavya Bhatt, Nimit Desai, and Mansi Naik. 2017. Probiotics: An adjuvant therapy for D-galactose induced Alzheimer’s disease. Journal of Medical Research and Innovation 1 (1): 30–33.

    Article  Google Scholar 

  • Metzker, M.L. 2010. Sequencing technologies – the next generation. Nature Reviews. Genetics 11 (1): 31–46. https://doi.org/10.1038/nrg2626.

    Article  CAS  PubMed  Google Scholar 

  • Mierau, I., P. Leij, I. van Swam, B. Blommestein, E. Floris, J. Mond, and E.J. Smid. 2005. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin. Microbial Cell Factories 4: 15. https://doi.org/10.1186/1475-2859-4-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills, S., O.E. McAuliffe, A. Coffey, G.F. Fitzgerald, and R.P. Ross. 2006. Plasmids of lactococci – genetic accessories or genetic necessities? FEMS Microbiology Reviews 30 (2): 243–273. https://doi.org/10.1111/j.1574-6976.2005.00011.x.

    Article  CAS  PubMed  Google Scholar 

  • Molbak, K. 2004. Spread of resistant bacteria and resistance genes from animals to humans—The public health consequences. Journal of Veterinary Medicine. B, Infectious Diseases and Veterinary Public Health 51 (8–9): 364–369. https://doi.org/10.1111/j.1439-0450.2004.00788.x.

    Article  CAS  PubMed  Google Scholar 

  • Orla-Jensen, Sigurd. 1919. The lactic acid bacteria, (D Kgl danske vidensk Selsk Skrifter Naturv og mathematisk Afd, 8 Række,vol 2 ). Københaven: A. F. Høst.

    Google Scholar 

  • O’Sullivan, D.J., and T.R. Klaenhammer. 1993. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137 (2): 227–231.

    Article  Google Scholar 

  • Pedersen, M.B., S.L. Iversen, K.I. Sorensen, and E. Johansen. 2005. The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiology Reviews 29 (3): 611–624. https://doi.org/10.1016/j.femsre.2005.04.001.

    Article  CAS  PubMed  Google Scholar 

  • Pei, A., C.W. Nossa, P. Chokshi, M.J. Blaser, L. Yang, D.M. Rosmarin, and Z. Pei. 2009. Diversity of 23S rRNA genes within individual prokaryotic genomes. PLoS One 4 (5): e5437. https://doi.org/10.1371/journal.pone.0005437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterbauer, C., T. Maischberger, and D. Haltrich. 2011. Food-grade gene expression in lactic acid bacteria. Biotechnology Journal 6 (9): 1147–1161. https://doi.org/10.1002/biot.201100034.

    Article  CAS  PubMed  Google Scholar 

  • Quiberoni, A., J.I. Stiefel, and J.A. Reinheimer. 2000. Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. Journal of Applied Microbiology 89 (6): 1059–1065.

    Article  CAS  Google Scholar 

  • Rahav, G., S. Sela, and H. Bercovier. 1990. Development of sensitive methods for the detection of mycobacteria by DNA probes. FEMS Microbiology Letters 60 (1–2): 29–33.

    Article  CAS  Google Scholar 

  • Rajkovic, A., N. Smigic, and F. Devlieghere. 2010. Contemporary strategies in combating microbial contamination in food chain. International Journal of Food Microbiology 141: S29–S42. https://doi.org/10.1016/j.ijfoodmicro.2009.12.019.

    Article  PubMed  Google Scholar 

  • Rajoka, Muhammad Shahid Riaz, Junling Shi, Jing Zhu, Dongyan Shao, Qingsheng Huang, Hui Yang, and Mingliang Jin. 2017. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Applied Microbiology and Biotechnology 101 (1): 35–45.

    Article  Google Scholar 

  • Renouf, V., O. Claisse, C. Miot-Sertier, and A. Lonvaud-Funel. 2006. Lactic acid bacteria evolution during winemaking: Use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiology 23 (2): 136–145. https://doi.org/10.1016/j.fm.2005.01.019.

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi, A., G. Blaiotta, A. Di Cerbo, M. Succi, and M. Aponte. 2014. Behaviour of lactic acid bacteria populations in Pecorino di Carmasciano cheese samples submitted to environmental conditions prevailing in the gastrointestinal tract: Evaluation by means of a polyphasic approach. International Journal of Food Microbiology 179: 64–71. https://doi.org/10.1016/j.ijfoodmicro.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  • Ringø, Einar, Lisbeth Løvmo, Mads Kristiansen, Yvonne Bakken, Irene Salinas, Reidar Myklebust, Rolf Erik Olsen, and Terry M. Mayhew. 2010. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: A review. Aquaculture Research 41 (4): 451–467.

    Article  Google Scholar 

  • Rosenbaum, V., and D. Riesner. 1987. Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophysical Chemistry 26 (2–3): 235–246.

    Article  CAS  Google Scholar 

  • Ruiz Rodriguez, L., E. Vera Pingitore, G. Rollan, P.S. Cocconcelli, C. Fontana, L. Saavedra, G. Vignolo, and E.M. Hebert. 2016. Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs. Journal of Applied Microbiology 120 (5): 1289–1301. https://doi.org/10.1111/jam.13104.

    Article  CAS  PubMed  Google Scholar 

  • Saez-Lara, Maria Jose, Carolina Gomez-Llorente, Julio Plaza-Diaz, and Angel Gil. 2015. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Research International 2015: 505878.

    Article  Google Scholar 

  • Sakai, K., and Y. Ezaki. 2006. Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. Journal of Bioscience and Bioengineering 101 (6): 457–463. https://doi.org/10.1263/jbb.101.457.

    Article  CAS  PubMed  Google Scholar 

  • Salama, M., W. Sandine, and S. Giovannoni. 1991. Development and application of oligonucleotide probes for identification of Lactococcus-lactis subsp cremoris. Applied and Environmental Microbiology 57 (5): 1313–1318.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, M.E., and T.R. Klaenhammer. 1983. Characterization of phage-sensitive mutants from a phage-insensitive strain of Streptococcus lactis: Evidence for a plasmid determinant that prevents phage adsorption. Applied and Environmental Microbiology 46 (5): 1125–1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74 (12): 5463–5467.

    Article  CAS  Google Scholar 

  • Schleifer, K.H., M. Ehrmann, C. Beimfohr, E. Brockmann, W. Ludwig, and R. Amann. 1995. Application of molecular methods for the classification and identification of lactic acid bacteria. International Dairy Journal 5 (8): 1081–1094. https://doi.org/10.1016/0958-6946(95)00047-X.

    Article  CAS  Google Scholar 

  • Selle, K., and T.R. Klaenhammer. 2013. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiology Reviews 37 (6): 915–935. https://doi.org/10.1111/1574-6976.12021.

    Article  CAS  PubMed  Google Scholar 

  • Sghir, A., G. Gramet, A. Suau, V. Rochet, P. Pochart, and J. Dore. 2000. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Applied and Environmental Microbiology 66 (5): 2263–2266.

    Article  CAS  Google Scholar 

  • Shah, A.A., Y. Xianjun, D. Zhihao, L. Junfeng, and T. Shao. 2017. Isolation and molecular identification of lactic acid bacteria from King grass and their application to improve the fermentation quality of sweet Sorghum. World Journal of Microbiology and Biotechnology 34 (1): 4. https://doi.org/10.1007/s11274-017-2387-2.

    Article  CAS  PubMed  Google Scholar 

  • Shareck, J., Y. Choi, B. Lee, and C.B. Miguez. 2004. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: Their characteristics and potential applications in biotechnology. Critical Reviews in Biotechnology 24 (4): 155–208.

    Article  CAS  Google Scholar 

  • Sharma, A., G.K. Rath, S.P. Chaudhary, A. Thakar, B.K. Mohanti, and S. Bahadur. 2012. Lactobacillus brevis CD2 lozenges reduce radiation- and chemotherapy-induced mucositis in patients with head and neck cancer: A randomized double-blind placebo-controlled study. European Journal of Cancer 48 (6): 875–881. https://doi.org/10.1016/j.ejca.2011.06.010.

    Article  CAS  PubMed  Google Scholar 

  • Shawn, E.L., and M.M. Richard. 2016. Advancements in next-generation sequencing. Annual Review of Genomics and Human Genetics 17: 95–115.

    Article  Google Scholar 

  • Sklarz, M.Y., R. Angel, O. Gillor, and M.I. Soares. 2009. Evaluating amplified rDNA restriction analysis assay for identification of bacterial communities. Antonie Van Leeuwenhoek 96 (4): 659–664. https://doi.org/10.1007/s10482-009-9380-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, Y.J., A.J. Ryu, L. Li, N.S. Han, and K.J. Jeong. 2016. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum. Microbial Cell Factories 15: 12. https://doi.org/10.1186/s12934-015-0400-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soorni, A., D. Haak, D. Zaitlin, and A. Bombarely. 2017. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data. BMC Genomics 18 (1): 49. https://doi.org/10.1186/s12864-016-3412-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl, D.A., B. Flesher, H.R. Mansfield, and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Applied and Environmental Microbiology 54 (5): 1079–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streit, J.M., R.N. Jones, M.A. Toleman, L.S. Stratchounski, and T.R. Fritsche. 2006. Prevalence and antimicrobial susceptibility patterns among gastroenteritis-causing pathogens recovered in Europe and Latin America and Salmonella isolates recovered from bloodstream infections in North America and Latin America: Report from the SENTRY Antimicrobial Surveillance Program (2003). International Journal of Antimicrobial Agents 27 (5): 367–375. https://doi.org/10.1016/j.ijantimicag.2005.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., X. Chen, J. Wang, W. Zhao, Y. Shao, Z. Guo, X. Zhang, Z. Zhou, T. Sun, L. Wang, H. Meng, H. Zhang, and W. Chen. 2011. Complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus strain ND02. Journal of Bacteriology 193 (13): 3426–3427. https://doi.org/10.1128/JB.05004-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Z., W. Zhang, C. Guo, X. Yang, W. Liu, Y. Wu, Y. Song, L.Y. Kwok, Y. Cui, B. Menghe, R. Yang, L. Hu, and H. Zhang. 2015. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: A snapshot of its genetic diversity and evolution. PLoS One 10 (2): e0117912. https://doi.org/10.1371/journal.pone.0117912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sybesma, W., J. Hugenholtz, W.M. de Vos, and E.J. Smid. 2006. Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry. Electronic Journal of Biotechnology 9 (4): 424–448. https://doi.org/10.2225/vol9-issue4-fulltext-12.

    Article  CAS  Google Scholar 

  • Tajabadi-Ebrahimi, M., N. Sharifi, A. Farrokhian, F. Raygan, F. Karamali, R. Razzaghi, S. Taheri, and Z. Asemi. 2017. A randomized controlled clinical trial investigating the effect of synbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Experimental and Clinical Endocrinology & Diabetes 125 (1): 21–27. https://doi.org/10.1055/s-0042-105441.

    Article  CAS  Google Scholar 

  • Takala, T.M., and P.E. Saris. 2002. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Applied Microbiology and Biotechnology 59 (4–5): 467–471. https://doi.org/10.1007/s00253-002-1034-4.

    Article  CAS  PubMed  Google Scholar 

  • Thiele, S., B.M. Fuchs, N. Ramaiah, and R. Amann. 2012. Microbial community response during the iron fertilization experiment LOHAFEX. Applied and Environmental Microbiology 78 (24): 8803–8812. https://doi.org/10.1128/AEM.01814-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toomey, N., A. Monaghan, S. Fanning, and D.J. Bolton. 2009. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix. Foodborne Pathogens and Disease 6 (8): 925–933. https://doi.org/10.1089/fpd.2009.0278.

    Article  CAS  PubMed  Google Scholar 

  • Tsaousi, G., S. Kokkota, P. Papakostas, G. Stavrou, E. Doumaki, and K. Kotzampassi. 2017. Body composition analysis for discrimination of prolonged hospital stay in colorectal cancer surgery patients. European Journal of Cancer Care (Engl) 26 (6). https://doi.org/10.1111/ecc.12491.

    Article  Google Scholar 

  • Tursi, A., G. Brandimarte, A. Papa, A. Giglio, W. Elisei, G.M. Giorgetti, G. Forti, S. Morini, C. Hassan, M.A. Pistoia, M.E. Modeo, S. Rodino, T. D’Amico, L. Sebkova, N. Sacca, E. Di Giulio, F. Luzza, M. Imeneo, T. Larussa, S. Di Rosa, V. Annese, S. Danese, and A. Gasbarrini. 2010. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: A double-blind, randomized, placebo-controlled study. The American Journal of Gastroenterology 105 (10): 2218–2227. https://doi.org/10.1038/ajg.2010.218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaneechoutte, M., R. Rossau, P. De Vos, M. Gillis, D. Janssens, N. Paepe, A. De Rouck, T. Fiers, G. Claeys, and K. Kersters. 1992. Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiology Letters 72 (3): 227–233.

    Article  CAS  Google Scholar 

  • Vaughan, E.E., H.G. Heilig, K. Ben-Amor, and W.M. de Vos. 2005. Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiology Reviews 29 (3): 477–490. https://doi.org/10.1016/j.femsre.2005.04.009.

    Article  CAS  PubMed  Google Scholar 

  • Venema, K., and A.J. Maathuis. 2003. A PCR-based method for identification of bifidobacteria from the human alimentary tract at the species level. FEMS Microbiology Letters 224 (1): 143–149.

    Article  CAS  Google Scholar 

  • Ventura, M., C. Canchaya, A. Del Casale, F. Dellaglio, E. Neviani, G.F. Fitzgerald, and D. van Sinderen. 2006. Analysis of bifidobacterial evolution using a multilocus approach. International Journal of Systematic and Evolutionary Microbiology 56 (Pt 12): 2783–2792. https://doi.org/10.1099/ijs.0.64233-0.

    Article  CAS  PubMed  Google Scholar 

  • Verraes, C., S. Van Boxstael, E. Van Meervenne, E. Van Coillie, P. Butaye, B. Catry, M.A. de Schaetzen, X. Van Huffel, H. Imberechts, K. Dierick, G. Daube, C. Saegerman, J. De Block, J. Dewulf, and L. Herman. 2013. Antimicrobial resistance in the food chain: A review. International Journal of Environmental Research and Public Health 10 (7): 2643–2669. https://doi.org/10.3390/ijerph10072643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetrovsky, T., and P. Baldrian. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8 (2): e57923. https://doi.org/10.1371/journal.pone.0057923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Wright, A., S. Wessels, S. Tynkkynen, and M. Saarela. 1990. Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant. Applied and Environmental Microbiology 56 (7): 2029–2035.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, et al. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 23 (21): 4407–4414.

    Article  CAS  Google Scholar 

  • Walsh, C., G. Duffy, P. Nally, R. O’Mahony, D.A. McDowell, and S. Fanning. 2008. Transfer of ampicillin resistance from Salmonella Typhimurium DT104 to Escherichia coli K12 in food. Letters in Applied Microbiology 46 (2): 210–215. https://doi.org/10.1111/j.1472-765X.2007.02288.x.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., C. Chen, L. Ai, F. Zhou, Z. Zhou, L. Wang, H. Zhang, W. Chen, and B. Guo. 2011. Complete genome sequence of the probiotic Lactobacillus plantarum ST-III. Journal of Bacteriology 193 (1): 313–314. https://doi.org/10.1128/JB.01159-10.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Juntong, Haiqin Chen, Bo Yang, Gu Zhennan, Hao Zhang, Wei Chen, and Yong Q. Chen. 2016. Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice. RSC Advances 6 (18): 14457–14464.

    Article  CAS  Google Scholar 

  • Watanabe, K., K. Ishibashi, Y. Nakashima, and T. Sakurai. 1984. A phage-resistant mutant of Lactobacillus casei which permits phage adsorption but not genome injection. The Journal of General Virology 65 (Pt 5): 981–986. https://doi.org/10.1099/0022-1317-65-5-981.

    Article  PubMed  Google Scholar 

  • Wegener, H.C. 2003. Antibiotics in animal feed and their role in resistance development. Current Opinion in Microbiology 6 (5): 439–445.

    Article  CAS  Google Scholar 

  • Wegrzyn, G., and A. Wegrzyn. 2002. Stress responses and replication of plasmids in bacterial cells. Microbial Cell Factories 1 (1): 2.

    Article  Google Scholar 

  • Wells, J.M., and A. Mercenier. 2008. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews. Microbiology 6 (5): 349–362. https://doi.org/10.1038/nrmicro1840.

    Article  CAS  PubMed  Google Scholar 

  • Wickens, K.L., C.A. Barthow, R. Murphy, P.R. Abels, R.M. Maude, P.R. Stone, E.A. Mitchell, T.V. Stanley, G.L. Purdie, J.M. Kang, F.E. Hood, J.L. Rowden, P.K. Barnes, P.F. Fitzharris, and J. Crane. 2017. Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: A randomised controlled trial. The British Journal of Nutrition 117 (6): 804–813. https://doi.org/10.1017/S0007114517000289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese, C.R., O. Kandler, and M.L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87 (12): 4576–4579.

    Article  CAS  Google Scholar 

  • Xufre, A., H. Albergaria, J. Inacio, I. Spencer-Martins, and F. Girio. 2006. Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. International Journal of Food Microbiology 108 (3): 376–384. https://doi.org/10.1016/j.ijfoodmicro.2006.01.025.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, R., and P. Shukla. 2017. An overview of advanced technologies for selection of probiotics and their expediency: A review. Critical Reviews in Food Science and Nutrition 57 (15): 3233–3242. https://doi.org/10.1080/10408398.2015.1108957.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., H. Chen, F. Tian, J. Zhao, Z. Gu, H. Zhang, Y.Q. Chen, and W. Chen. 2015. Complete genome sequence of Lactobacillus plantarum ZS2058, a probiotic strain with high conjugated linoleic acid production ability. Journal of Biotechnology 214: 212–213. https://doi.org/10.1016/j.jbiotec.2015.09.036.

    Article  CAS  PubMed  Google Scholar 

  • Yarza, P., P. Yilmaz, E. Pruesse, F.O. Glockner, W. Ludwig, K.H. Schleifer, W.B. Whitman, J. Euzeby, R. Amann, and R. Rossello-Mora. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews. Microbiology 12 (9): 635–645. https://doi.org/10.1038/nrmicro3330.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Jianxin, Xiaojun Dai, Xiaoming Liu, Haiqin Chen, Jian Tang, Hao Zhang, and Wei Chen. 2009. Changes in microbial community during Chinese traditional soybean paste fermentation. International Journal of Food Science and Technology 44 (12): 2526–2530.

    Article  CAS  Google Scholar 

  • Zhong, Z., W. Zhang, Y. Song, W. Liu, H. Xu, X. Xi, B. Menghe, H. Zhang, and Z. Sun. 2017. Comparative genomic analysis of the genus Enterococcus. Microbiological Research 196: 95–105. https://doi.org/10.1016/j.micres.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  • Zycka-Krzesinska, J., J. Boguslawska, T. Aleksandrzak-Piekarczyk, J. Jopek, and J.K. Bardowski. 2015. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products. International Journal of Food Microbiology 211: 134–141. https://doi.org/10.1016/j.ijfoodmicro.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W., Gu, Z. (2018). Genomic Analysis of Lactic Acid Bacteria and Their Applications. In: Lactic Acid Bacteria in Foodborne Hazards Reduction. Springer, Singapore. https://doi.org/10.1007/978-981-13-1559-6_2

Download citation

Publish with us

Policies and ethics