Skip to main content

AFM and NSOM/QD Based Direct Molecular Visualization at the Single-Cell Level

  • Chapter
  • First Online:
Atomic Force Microscopy in Molecular and Cell Biology
  • 1187 Accesses

Abstract

Cell surface molecules such as receptors play an important role to regulate many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. Specially, these events often involve multimolecular interactions occurring on a nanometer scale, and how to image the distribution and organization of cell surface molecules are becoming increasingly required in Cell and Molecular biology Sciences. By combing atomic force microscopy (AFM), near-field scanning microscopy (NSOM) and quantum dots (QD) labeling, a novel AFM and NSOM/QD-based dual-color nanoscale imaging system is constructed to directly visualize the distribution and organization of these molecules on cell-membrane surface. And this will supply a powerful tool for direct molecular visualization at the single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delcassian D, Depoil D, Rudnicka D, Liu M, Davis DM, Dustin ML, Dunlop IE. Nanoscale ligand spacing influences receptor triggering in T cells and NK cells. Nano Lett. 2013;13(11):5608–14. https://doi.org/10.1021/nl403252x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. 2006;25:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yokosuka T, Sakata-Sogawa K, Kobayashi W, et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol. 2005;6:1253–62.

    Article  CAS  PubMed  Google Scholar 

  4. Kuo SC, Sheetz MP. Force of single kinesin molecules measured with optical tweezers. Science. 1993;260:232–4.

    Article  CAS  PubMed  Google Scholar 

  5. Hu YS, Cang H, Lillemeier BF. Superresolution imaging reveals nanometer- and micrometer-scale spatial distributions of T-cell receptors in lymph nodes. PNAS. 2016;113(26):7201–6. https://doi.org/10.1073/pnas.1512331113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Betzig E., Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. SPIE 1992, 10; 257 (5067):189–195.

    Article  CAS  PubMed  Google Scholar 

  7. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science. 1991;251(5000):1468–70.

    Article  CAS  PubMed  Google Scholar 

  8. Baylis RM, Doak SH, Holton MD, Dunstan PR. Fluorescence imaging and investigations of directly labelled chromosomes using scanning near-field optical microscopy. Ultramicroscopy. 2007;107:308–12.

    Article  CAS  PubMed  Google Scholar 

  9. Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E. Near field scanning optical microscopy (NSOM) development and biophysical applications. Biophys J. 1986;49(1):269–79. https://doi.org/10.1016/S0006-3495(86)83640-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Zanten TS, Cambi A, Koopman M, Joosten B, Figdor CG, Garcia-Parajo MF. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. PNAS. 2009;106:18557–62.

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Zanten TS, Gomez J, Manzo C, Camb A, Buceta J, Reigada R, Garcia-Parajo MF. Direct mapping of nanoscale compositional connectivity on intact cell membranes. PNAS. 2010;107:15437–41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Bakker BI, de Lange F, Cambi A, Korterik JP, van Dijk EMHP, van Hulst NF, Figdor CG, García-Parajo MF. Nanoscale organization of the pathogen recognition receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy. ChemPhysChem. 2007;8:1473–80.

    Article  PubMed  Google Scholar 

  13. Herrmann M, Neuberth N, Wissler J, Perez J, Gradl D, Naber A. Near-field optical study of protein transport kinetics at a single nuclear pore. Nano Lett. 2009;9:3330–6.

    Article  CAS  PubMed  Google Scholar 

  14. de Bakker BI, Bodnar A, van Dijk EMHP, Vamosi G, Damjanovich S, Waldmann TA, van Hulst NF, Jenei A, Garcia-Parajo MF. Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human lymphoma T cells. J Cell Sci. 2008;121:627–33.

    Article  PubMed  Google Scholar 

  15. Enderle T, Ha T, Ogletree DF, Chemla DS, Magowan C, Weiss S. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. PNAS. 1997;94(2):520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Enderle T, Ha T, Chemla DS, Weiss S. Near-field fluorescence microscopy of cells. Ultramicroscopy. 1998;71(1–4):303–9.

    Article  CAS  PubMed  Google Scholar 

  17. Borger JG, Zamoyska R, Gakamsky DM. Proximity of TCR and its CD8 coreceptor controls sensitivity of T cells. Immunol Lett. 2014;157(1–2):16–22. https://doi.org/10.1016/j.imlet.2013.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huckabay HA, Armendariz KP, Newhart WH, Wildgen SM, Dunn RC. Near-field scanning optical microscopy for high-resolution membrane studies. Methods Mol Biol. 2013;950:373–94. https://doi.org/10.1007/978-1-62703-137-0_21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinterdorfer P, Garcia-Parajo MF, Dufrêne YF. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res. 2012;45(3):327–36. https://doi.org/10.1021/ar2001167.

    Article  CAS  PubMed  Google Scholar 

  20. Huckabay HA, Armendariz KP, Newhart WH, Wildgen SM, Dunn RC. Near-field scanning optical microscopy for high-resolution membrane studies. Methods Mol Biol. 2013;950:373–94. https://doi.org/10.1007/978-1-62703-137-0_21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinterdorfer P, Garcia-Parajo MF, Dufrene YF. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res. 2012;45(3):327–36. https://doi.org/10.1021/ar2001167.

    Article  CAS  PubMed  Google Scholar 

  22. Abeyasinghe N, Kumar S, Sun K, Mansfield JF, Jin R, Goodson T. Enhanced emission from single isolated gold quantum dots investigated using two-photon-excited fluorescence near-field scanning optical microscopy. J Am Chem Soc. 2016;138(50):16299–307. https://doi.org/10.1021/jacs.6b07737.

    Article  CAS  PubMed  Google Scholar 

  23. Kelly-Ann DW, Morgan C, Shareen HD, Peter RD. Quantum dots for multiplexed detection and characterisation of prostate cancer cells using a scanning near-field optical microscope. PLoS One. 2013;7(2):e31592. https://doi.org/10.1371/journal.pone.0031592.

    Article  CAS  Google Scholar 

  24. Chen Y, Shao L, Ali Z, Cai J, Zheng W. ChenNSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal V_2V_2 T-cell expansion. Blood. 2008;11

    Google Scholar 

  25. Zhong L, Zeng G, Lu X, Wang RC, Gong G, Yan L, Huang D, Chen ZW. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS One. 2009;4(6):e5945. https://doi.org/10.1371/journal.pone.0005945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng G, Chen J, Zhong L, Wang R, Jiang L, Cai J, Lin Y, Huang D, Chen CY, Zheng W. Chen1NSOM- and AFM-based nanotechnology elucidates nanostructural and atomic-force features of a Y. pestis V immunogen containing particle vaccine capable of eliciting robust response. Proteomics. 2009;9(6):1538–47. https://doi.org/10.1002/pmic.200800528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhong L, Zhang Z, Lu X, Huang D, Chen CY, Wang R, Chen ZW. NSOM/QD-based fluorescence-topographic image fusion directly reveals nano-spatial peak-valley polarities of CD69 and CD71 activation molecules on cell-membrane fluctuations during T-cell activation. Immunol Lett. 2011;140(1–2):44–51. https://doi.org/10.1016/j.imlet.2011.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan J, Lu X, Liu S, Zhong L. Nanoscale relationship between CD4 and CD25 of T cells visualized with NSOM/QD-based dual-color imaging system. Nanoscale Res Lett. 2015;10(1):419. https://doi.org/10.1186/s11671-015-1130-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Qin J, Chen ZW. Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations. J Lipid Res. 2008;49(10):2268–75. https://doi.org/10.1194/jlr.D800031-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Qin J, Cai J, Chen ZW. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. PLoS One. 2009;4(4):e5386. https://doi.org/10.1371/journal.pone.0005386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhong L, Zhang Z, Lu X, Liu S, Chen CY, Chen ZW. NSOM/QD-based visualization of GM1 serving as platforms for TCR/CD3 mediated T-cell activation. Biomed Res Int. 2013;2013:276498. https://doi.org/10.1155/2013/276498.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ke C, Chen J, Guo Y, Chen ZW, Cai J. Migration mechanism of mesenchymal stem cells studied by QD/NSOM. Biochim Biophys Acta. 2015;1848(3):859–68. https://doi.org/10.1016/j.bbamem.2014.12.013.

    Article  CAS  PubMed  Google Scholar 

  33. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. 2006;25:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yokosuka T, Sakata-Sogawa K, Kobayashi W, et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol. 2005;6:1253–62.

    Article  CAS  PubMed  Google Scholar 

  35. Billadeau DD, Burkhardt JK. Regulation of cytoskeletal dynamics at the immune synapse: new stars join the actin troupe. Traffic. 2006;7:1451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anikeeva N, Lebedeva T, Clapp AR, et al. Quantum dot/peptide-MHC biosensors reveal strong CD8-dependent cooperation between self and viral antigens that augment the T-cell response. PNAS. 2006;103:16846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Billadeau DD, Nolz JC, Gomez TS. Regulation of T-cell activation by the cytoskeleton. Nat Rev Immunol. 2007;7:131–43.

    Article  CAS  PubMed  Google Scholar 

  38. Tooley AJ, Gilden J, Jacobelli J, Beemiller P, Trimble WS, Kinoshita M, Krummel MF. AmoeboidT lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol. 2009;11:17–26.

    Article  CAS  PubMed  Google Scholar 

  39. Lasserre R, Alcover A. Cytoskeletal cross-talk in the control of T cell antigen receptor signaling. FEBS Lett. 2010;584:4845–50.

    Article  CAS  PubMed  Google Scholar 

  40. Manz BN, Groves JT. Spatial organization and signal transduction at intercellular junctions. Nat Rev Mol Cell Biol. 2011;11:342–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyun Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhong, L., Cai, J., Chen, Z. (2018). AFM and NSOM/QD Based Direct Molecular Visualization at the Single-Cell Level. In: Cai, J. (eds) Atomic Force Microscopy in Molecular and Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1510-7_7

Download citation

Publish with us

Policies and ethics