Skip to main content

Regulation of Lipolysis in Adipose Tissue and Clinical Significance

  • Chapter
  • First Online:
Neural Regulation of Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1090))

Abstract

Lipolysis is a critical process to hydrolyze triglyceride in adipose tissue, thereby breaking down the stored lipid and maintaining energy homeostasis. Recent studies have made significant progress in understanding the steps of lipolysis. This chapter discusses the major pathways that regulate lipolysis in adipose tissue. Specifically we focus on the mechanisms by which the activities of critical lipolytic enzymes are regulated. We further discuss how the lipolysis is regulated by other factors, including insulin and neurotransmitters, in particular catecholamines and the role of sympathetic nervous system in the whole process. Finally we provide clinical perspectives about the novel therapeutic strategies to target or promote adipose tissue lipolysis for treatment/prevention of obesity and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zechner R, Madeo F, Kratky D (2017) Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 18:671–684. https://doi.org/10.1038/nrm.2017.76

    Article  CAS  PubMed  Google Scholar 

  2. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101. https://doi.org/10.1146/annurev.nutr.27.061406.093734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fruhbeck G, Mendez-Gimenez L, Fernandez-Formoso JA, Fernandez S, Rodriguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27:63–93. https://doi.org/10.1017/S095442241400002X

    Article  CAS  PubMed  Google Scholar 

  4. Bartness TJ, Liu Y, Shrestha YB, Ryu V (2014) Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 35:473–493. https://doi.org/10.1016/j.yfrne.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jenkins CM et al (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975. https://doi.org/10.1074/jbc.M407841200

    Article  CAS  PubMed  Google Scholar 

  6. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075. https://doi.org/10.1074/jbc.M403855200

    Article  CAS  PubMed  Google Scholar 

  7. Zimmermann R et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386. https://doi.org/10.1126/science.1100747

    Article  CAS  PubMed  Google Scholar 

  8. Schweiger M et al (2008) The C-terminal region of human adipose triglyceride lipase affects enzyme activity and lipid droplet binding. J Biol Chem 283:17211–17220. https://doi.org/10.1074/jbc.M710566200

    Article  CAS  PubMed  Google Scholar 

  9. Duncan RE et al (2010) Characterization of desnutrin functional domains: critical residues for triacylglycerol hydrolysis in cultured cells. J Lipid Res 51:309–317. https://doi.org/10.1194/jlr.M000729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kershaw EE et al (2006) Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 55:148–157

    Article  CAS  Google Scholar 

  11. Ong KT, Mashek MT, Bu SY, Mashek DG (2013) Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB J Off Publ Fed Am Soc Exp Biol 27:313–321. https://doi.org/10.1096/fj.12-213454

    Article  CAS  Google Scholar 

  12. Hoy AJ et al (2011) Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation. Endocrinology 152:48–58. https://doi.org/10.1210/en.2010-0661

    Article  CAS  PubMed  Google Scholar 

  13. Kienesberger PC et al (2009) Adipose triglyceride lipase deficiency causes tissue-specific changes in insulin signaling. J Biol Chem 284:30218–30229. https://doi.org/10.1074/jbc.M109.047787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287. https://doi.org/10.1097/01.mol.0000073508.41685.7f

    Article  CAS  PubMed  Google Scholar 

  15. Listenberger LL et al (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100:3077–3082. https://doi.org/10.1073/pnas.0630588100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schweiger M et al (2017) Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nat Commun 8:14859. https://doi.org/10.1038/ncomms14859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mayer N et al (2013) Development of small-molecule inhibitors targeting adipose triglyceride lipase. Nat Chem Biol 9:785–787. https://doi.org/10.1038/nchembio.1359

    Article  CAS  PubMed  Google Scholar 

  18. Ahmadian M et al (2011) Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 13:739–748. https://doi.org/10.1016/j.cmet.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim SJ et al (2016) AMPK phosphorylates Desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol Cell Biol 36:1961–1976. https://doi.org/10.1128/MCB.00244-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nielsen TS, Jessen N, Jorgensen JO, Moller N, Lund S (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 52:R199–R222. https://doi.org/10.1530/JME-13-0277

    Article  CAS  PubMed  Google Scholar 

  21. Zechner R et al (2012) FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291. https://doi.org/10.1016/j.cmet.2011.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartz R et al (2007) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 6:3256–3265. https://doi.org/10.1021/pr070158j

    Article  CAS  PubMed  Google Scholar 

  23. Boeszoermenyi A et al (2015) Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J Biol Chem 290:26361–26372. https://doi.org/10.1074/jbc.M115.682203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cornaciu I et al (2011) The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively. PLoS One 6:e26349. https://doi.org/10.1371/journal.pone.0026349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gandotra S et al (2011) Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem 286:34998–35006. https://doi.org/10.1074/jbc.M111.278853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Granneman JG, Moore HP, Krishnamoorthy R, Rathod M (2009) Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 284:34538–34544. https://doi.org/10.1074/jbc.M109.068478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sahu-Osen A et al (2015) CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization. J Lipid Res 56:109–121. https://doi.org/10.1194/jlr.M055004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang X et al (2010) The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 11:194–205. https://doi.org/10.1016/j.cmet.2010.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nielsen TS et al (2011) Fasting, but not exercise, increases adipose triglyceride lipase (ATGL) protein and reduces G(0)/G(1) switch gene 2 (G0S2) protein and mRNA content in human adipose tissue. J Clin Endocrinol Metab 96:E1293–E1297. https://doi.org/10.1210/jc.2011-0149

    Article  CAS  PubMed  Google Scholar 

  30. Vaughan M, Berger JE, Steinberg D (1964) Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239:401–409

    CAS  PubMed  Google Scholar 

  31. Rodriguez JA et al (2010) In vitro stereoselective hydrolysis of diacylglycerols by hormone-sensitive lipase. Biochim Biophys Acta 1801:77–83. https://doi.org/10.1016/j.bbalip.2009.09.020

    Article  CAS  PubMed  Google Scholar 

  32. Bezaire V et al (2009) Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 284:18282–18291. https://doi.org/10.1074/jbc.M109.008631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fredrikson G, Tornqvist H, Belfrage P (1986) Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim Biophys Acta 876:288–293

    Article  CAS  Google Scholar 

  34. Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297. https://doi.org/10.1016/j.plipres.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  35. Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393. https://doi.org/10.1146/annurev.nutr.20.1.365

    Article  CAS  PubMed  Google Scholar 

  36. Haemmerle G et al (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–4815. https://doi.org/10.1074/jbc.M110355200

    Article  CAS  PubMed  Google Scholar 

  37. Albert JS et al (2014) Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med 370:2307–2315. https://doi.org/10.1056/NEJMoa1315496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi YH et al (2006) Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J Clin Invest 116:3240–3251. https://doi.org/10.1172/JCI24867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tornqvist H, Belfrage P (1976) Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J Biol Chem 251:813–819

    CAS  PubMed  Google Scholar 

  40. Bezaire V, Langin D (2009) Regulation of adipose tissue lipolysis revisited. Proc Nutr Soc 68:350–360. https://doi.org/10.1017/S0029665109990279

    Article  CAS  PubMed  Google Scholar 

  41. Taschler U et al (2011) Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 286:17467–17477. https://doi.org/10.1074/jbc.M110.215434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schweiger M et al (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–40241. https://doi.org/10.1074/jbc.M608048200

    Article  CAS  PubMed  Google Scholar 

  43. Granchi C, Caligiuri I, Minutolo F, Rizzolio F, Tuccinardi T (2017) A patent review of Monoacylglycerol lipase (MAGL) inhibitors (2013-2017). Expert Opin Ther Pat 27:1341–1351. https://doi.org/10.1080/13543776.2018.1389899

    Article  CAS  PubMed  Google Scholar 

  44. Petrosino S, Di Marzo V (2010) FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr Opin Investig Drugs (London, England: 2000) 11:51–62

    CAS  Google Scholar 

  45. Lafontan M, Berlan M (1993) Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34:1057–1091

    CAS  PubMed  Google Scholar 

  46. Langin D (2006) Control of fatty acid and glycerol release in adipose tissue lipolysis. C R Biol 329:598–607., discussion 653-595. https://doi.org/10.1016/j.crvi.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  47. Greenberg AS et al (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346

    CAS  PubMed  Google Scholar 

  48. Stralfors P, Bjorgell P, Belfrage P (1984) Hormonal regulation of hormone-sensitive lipase in intact adipocytes: identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Proc Natl Acad Sci U S A 81:3317–3321

    Article  CAS  Google Scholar 

  49. Collins S (2014) A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol 10:157–163. https://doi.org/10.1038/nrendo.2013.234

    Article  CAS  PubMed  Google Scholar 

  50. Lafontan M et al (2008) Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab 19:130–137. https://doi.org/10.1016/j.tem.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  51. Sengenes C et al (2003) Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 278:48617–48626. https://doi.org/10.1074/jbc.M303713200

    Article  CAS  PubMed  Google Scholar 

  52. Birkenfeld AL et al (2006) Beta-adrenergic and atrial natriuretic peptide interactions on human cardiovascular and metabolic regulation. J Clin Endocrinol Metab 91:5069–5075. https://doi.org/10.1210/jc.2006-1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verboven K, Hansen D, Jocken JWE, Blaak EE (2017) Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev An Off J Int Assoc Study Obes 18:1243–1259. https://doi.org/10.1111/obr.12598

    Article  CAS  Google Scholar 

  54. Endo T, Kobayashi T (2012) Expression of functional TSH receptor in white adipose tissues of hyt/hyt mice induces lipolysis in vivo. Am J Physiol Endocrinol Metab 302:E1569–E1575. https://doi.org/10.1152/ajpendo.00572.2011

    Article  CAS  PubMed  Google Scholar 

  55. Janson A et al (1995) Effects of stimulatory and inhibitory thyrotropin receptor antibodies on lipolysis in infant adipocytes. J Clin Endocrinol Metab 80:1712–1716. https://doi.org/10.1210/jcem.80.5.7745024

    Article  CAS  PubMed  Google Scholar 

  56. Yip RG, Goodman HM (1999) Growth hormone and dexamethasone stimulate lipolysis and activate adenylyl cyclase in rat adipocytes by selectively shifting Gi alpha2 to lower density membrane fractions. Endocrinology 140:1219–1227. https://doi.org/10.1210/endo.140.3.6580

    Article  CAS  PubMed  Google Scholar 

  57. Samra JS et al (1999) Suppression of the nocturnal rise in growth hormone reduces subsequent lipolysis in subcutaneous adipose tissue. Eur J Clin Investig 29:1045–1052

    Article  CAS  Google Scholar 

  58. Jensen MD, Nielsen S (2007) Insulin dose response analysis of free fatty acid kinetics. Metabolism 56:68–76. https://doi.org/10.1016/j.metabol.2006.08.022

    Article  CAS  PubMed  Google Scholar 

  59. Whitman M, Downes CP, Keeler M, Keller T, Cantley L (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332:644–646. https://doi.org/10.1038/332644a0

    Article  CAS  PubMed  Google Scholar 

  60. Stokoe D et al (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277:567–570

    Article  CAS  Google Scholar 

  61. Choi SM et al (2010) Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol Cell Biol 30:5009–5020. https://doi.org/10.1128/MCB.00797-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Czech MP, Tencerova M, Pedersen DJ, Aouadi M (2013) Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 56:949–964. https://doi.org/10.1007/s00125-013-2869-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaushik S, Cuervo AM (2015) Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 17:759–770. https://doi.org/10.1038/ncb3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaushik S, Cuervo AM (2016) AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12:432–438. https://doi.org/10.1080/15548627.2015.1124226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martinez-Lopez N et al (2016) Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 23:113–127. https://doi.org/10.1016/j.cmet.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  66. Peirce V, Carobbio S, Vidal-Puig A (2014) The different shades of fat. Nature 510:76–83. https://doi.org/10.1038/nature13477

    Article  CAS  PubMed  Google Scholar 

  67. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM (2017) The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol 8:665. https://doi.org/10.3389/fphys.2017.00665

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mansfeld G, Müller F (1913) Der Einfluss des Nervensystems auf die Mobilisierung von Fett – Ein Beitrag zur Physiologie der Fettwanderung. Arch Physiol 152:61–67. https://doi.org/10.1007/BF01680895

    Article  Google Scholar 

  69. Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK (2010) Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 318:34–43. https://doi.org/10.1016/j.mce.2009.08.031

    Article  PubMed  Google Scholar 

  70. Youngstrom TG, Bartness TJ (1995) Catecholaminergic innervation of white adipose tissue in Siberian hamsters. Am J Phys 268:R744–R751

    CAS  Google Scholar 

  71. Youngstrom TG, Bartness TJ (1998) White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. Am J Phys 275:R1488–R1493

    CAS  Google Scholar 

  72. Demas GE, Bartness TJ (2001) Direct innervation of white fat and adrenal medullary catecholamines mediate photoperiodic changes in body fat. Am J Physiol Regul Integr Comp Physiol 281:R1499–R1505

    Article  CAS  Google Scholar 

  73. Ekstrand MI, Enquist LW, Pomeranz LE (2008) The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol Med 14:134–140. https://doi.org/10.1016/j.molmed.2007.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zeng W et al (2015) Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163:84–94. https://doi.org/10.1016/j.cell.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  75. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. https://doi.org/10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  76. Sun K et al (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci U S A 109:5874–5879. https://doi.org/10.1073/pnas.1200447109

    Article  PubMed  PubMed Central  Google Scholar 

  77. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377. https://doi.org/10.1038/nrm2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jocken JW et al (2008) Effect of beta-adrenergic stimulation on whole-body and abdominal subcutaneous adipose tissue lipolysis in lean and obese men. Diabetologia 51:320–327. https://doi.org/10.1007/s00125-007-0866-y

    Article  CAS  PubMed  Google Scholar 

  79. Langin D et al (2005) Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54:3190–3197

    Article  CAS  Google Scholar 

  80. Kolditz CI, Langin D (2010) Adipose tissue lipolysis. Curr Opin Clin Nutr Metab Care 13:377–381. https://doi.org/10.1097/MCO.0b013e32833bed6a

    Article  CAS  PubMed  Google Scholar 

  81. Ahmadian M et al (2009) Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity. Diabetes 58:855–866. https://doi.org/10.2337/db08-1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jaworski K et al (2009) AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med 15:159–168. https://doi.org/10.1038/nm.1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in Dr. Sun’s lab is supported by NIH grant R01DK109001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Sun, K. (2018). Regulation of Lipolysis in Adipose Tissue and Clinical Significance. In: Wu, Q., Zheng, R. (eds) Neural Regulation of Metabolism. Advances in Experimental Medicine and Biology, vol 1090. Springer, Singapore. https://doi.org/10.1007/978-981-13-1286-1_11

Download citation

Publish with us

Policies and ethics