Skip to main content

Coupled Nonlinear Schrödinger Equations with Gain and Loss: Modeling \(\mathcal {PT}\) Symmetry

  • Chapter
  • First Online:
Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

  • 2643 Accesses

Abstract

Coupled nonlinear Schrödinger (NLS) equations is an ubiquitous model describing wave propagation in diverse physical systems. In combination with gain and loss exactly balanced with each other, this model allows for modeling parity (\(\mathcal {P}\)) and time (\(\mathcal {T}\)) symmetries in frameworks beyond the non-Hermitian quantum mechanics, where they have been introduced originally. Being open, i.e. not conserving energy, such systems nevertheless bear many properties which are characteristic for conservative models. This allows one to explore various wave phenomena in \(\mathcal {PT}\)-symmetric settings, including bright and dark solitons and their interactions with defects, soliton switches, resonant wave interactions, wave collapse, etc. In this Chapter an overview of some recent results on these processes is presented. The outcomes are interpreted in contexts of nonlinear optics and matter wave theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullaev, F.Kh., Konotop, V.V., Ögren, M., Sørensen, M.P.: Zeno effect and switching of solitons in nonlinear couplers. Opt. Lett. 36, 4566 (2011)

    Article  ADS  Google Scholar 

  2. Alexeeva, N.V., Barashenkov, I.V., Sukhorukov, A.A., Kivshar, Yu.S.: Optical solitons in PT-symmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (2012)

    Article  ADS  Google Scholar 

  3. Akhmediev, N., Ankiewicz, A.: Dissipative solitons in the complex Ginzburg-Landau and Swift-Hohenberg equations. In: Akhmediev, N., Ankiewicz, A. (eds.) Dissipative Solitons. Springer, Berlin (2005)

    Chapter  Google Scholar 

  4. Barashenkov, I.V., Pelinovsky, D.E., Dubard, P.: Dimer with gain and loss: integrability and \(\mathcal {PT}\)-symmetry restoration. J. Phys. A: Math. Theor. 48, 325201 (2015)

    Article  MathSciNet  Google Scholar 

  5. Barashenkov, I.V., Suchkov, S.V., Sukhorukov, A.A., Dmitriev, S.V., Kivshar, Yu.S.: Breathers in \(\mathcal {PT}\)-symmetric optical couplers. Phys. Rev. A 86, 053809 (2012)

    Google Scholar 

  6. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bender, C.M., Boettcher, S.: Real spectra in mon-Hermitian Hamiltonians having \(\mathcal {PT}\) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bender, C.M., Gianfreda, M., Özdemir, Ş.K., Peng, B., Yang, L.: Twofold transition in \(\mathcal {PT}\)-symmetric coupled oscillators. Phys. Rev. A 88, 062111 (2013)

    Google Scholar 

  9. Midya, B., Konotop, V.V.: Waveguides with absorbing boundaries: nonlinearity controlled by an exceptional point and solitons. Phys. Rev. Lett. 119, 033905 (2017)

    Article  ADS  Google Scholar 

  10. Bludov, Yu.V., Driben, R., Konotop, V.V., Malomed, B.A.: Instabilities, solitons and rogue waves in -coupled nonlinear waveguides. J. Opt. 15, 064010 (2013)

    Article  ADS  Google Scholar 

  11. Bludov, Yu.V., Hang, C., Huang, G., Konotop, V.V.: \(\mathcal {PT}\)-symmetric coupler with a coupling defect: soliton interaction with exceptional point. Opt. Lett. 39, 3382 (2014)

    Article  ADS  Google Scholar 

  12. Bludov, Yu.V., Konotop, V.V., Malomed, B.A.: Stable dark solitons in PT-symmetric dual-core waveguides. Phys. Rev. A 87, 013816 (2013)

    Article  ADS  Google Scholar 

  13. Burlak, G., Malomed, B.A.: Stability boundary and collisions of two-dimensional solitons in \(\mathcal {PT}\)-symmetric couplers with the cubic-quintic nonlinearity. Phys. Rev. E 88, 062904 (2013)

    Google Scholar 

  14. Chiang, K.S.: Coupled-mode equations for pulse switching in parallel waveguides. IEEE J. Quantum Electron. 33, 950 (1997)

    Article  ADS  Google Scholar 

  15. Chiang, K.S., Chow, Y.T., Richardson, D.J., Taverner, D., Dong, L., Reekie, L.: Experimental demonstration of intermodal dispersion in a two-core optical fiber. Opt. Comm. 143, 189 (1997)

    Article  ADS  Google Scholar 

  16. Dai, C.-Q., Huang, W.-H.: Multi-rogue wave and multi-breather solutions in -symmetric coupled waveguides. Appl. Math. Lett. 32, 35 (2014)

    Article  MathSciNet  Google Scholar 

  17. Destyl, E., Nuiro, S.P., Poullet, P.: Critical blowup in coupled parity-time-symmetric nonlinear Schrödinger equations. AIMS Math. 2, 195 (2017)

    Article  Google Scholar 

  18. Dias, J.-P., Figueira, M., Konotop, V.V., Zezyulin, D.A.: Supercritical blowup in coupled parity-time-symmetric nonlinear Schrödinger equations. Stud. Appl. Math. 133, 422 (2014)

    Article  MathSciNet  Google Scholar 

  19. Dana, B., Bahabad, A., Malomed, B.A.: \(\mathcal {C}\mathcal {P}\) symmetry in optical systems. Phys. Rev. A 91, 043808 (2015)

    Google Scholar 

  20. Driben, R., Malomed, B.A.: Stabilization of solitons in PT models with supersymmetry by periodic management. EPL 96, 51001 (2011)

    Article  ADS  Google Scholar 

  21. Driben, R., Malomed, B.A.: Stability of solitons in parity-time-symmetric couplers. Opt. Lett. 36, 4323 (2011)

    Article  ADS  Google Scholar 

  22. Driben, R., Malomed, B.A.: Dynamics of higher-order solitons in regular and \(\mathcal {PT}\) -symmetric nonlinear couplers. EPL 99, 54001 (2012)

    Article  ADS  Google Scholar 

  23. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632 (2007)

    Article  ADS  Google Scholar 

  24. Faddeev, L.D., Takhtadjan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    Book  Google Scholar 

  25. Feijoo, D., Zezyulin, D.A., Konotop, V.V.: Two-dimensional solitons in conservative and parity-time-symmetric triple-core waveguides with cubic-quintic nonlinearity. Phys. Rev. A 92, 062909 (2015)

    MathSciNet  Google Scholar 

  26. Galitski, V., Spielman, I.B.: Spin-orbit coupling in quantum gases. Nature 494, 49 (2013)

    Article  ADS  Google Scholar 

  27. Jüngel, A., Weishäupl, R.-M.: Blow-up in two-component nonlinear Schrödinger systems with an external driven field. Math. Mod. Method Appl. Sci. 23, 1699 (2013)

    Article  Google Scholar 

  28. Kartashov, Y.V.: Vector solitons in parity-time-symmetric lattices. Opt. Lett. 38, 2600 (2013)

    Article  ADS  Google Scholar 

  29. Kartashov, Y.V., Konotop, V.V., Torner, L.: Topological states in partially-\(\mathcal {PT}\)-symmetric Azimuthal potentials. Phys. Rev. Lett. 115, 193902 (2015)

    Google Scholar 

  30. Kartashov, Y.V., Konotop, V.V., Zezyulin, D.A.: \(\mathcal {CPT}\) -symmetric spin–orbit-coupled condensate. EPL 107, 50002 (2014)

    Article  ADS  Google Scholar 

  31. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  32. Kogelnik, H., Schmidt, R.V.: Switched directional couplers with alternating Δβ. IEEE J. Quantum. Electron. 12, 396 (1979)

    Article  ADS  Google Scholar 

  33. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\mathcal {PT}\)-symmetric systems. Rev. Mod. Phys. 88, 35002 (2016)

    Google Scholar 

  34. Konotop, V.V., Zezyulin, D.A.: Phase transition through the splitting of self-dual spectral singularity in optical potentials. Opt. Lett. 42, 5206 (2017)

    Article  ADS  Google Scholar 

  35. Li, X., Xie, X.-T.: Solitons in \(\mathcal {PT}\)-symmetric nonlinear dissipative gratings. Phys. Rev. A 90, 033804 (2014)

    Google Scholar 

  36. Lin, Y.J., Jiménez-García, K., Spielman, I.B.: Spin–orbit-coupled Bose–Einstein condensates. Nature 427, 83 (2011)

    Article  ADS  Google Scholar 

  37. Lupu, A., Benisty, H., Degiron, A.: Switching using \(\mathcal {PT}\)-symmetry in plasmonic systems: positive role of the losses. Opt. Expr. 21, 21651 (2013)

    Google Scholar 

  38. Lupu, A., Konotop, V.V., Benisty, H.: Optimal \(\mathcal {PT}\)-symmetric switch features exceptional point. Sci. Rep. 7, 13299 (2017)

    Google Scholar 

  39. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in \(\mathcal {PT}\) symmetric optical lattices K. Phys. Rev. Lett. 100, 103904 (2008)

    Google Scholar 

  40. Malomed, B.A.: A variety of dynamical settings in dual-core nonlinear fibers. In: Peng, G.-D. (ed.) Handbook of Optical Fibers. Springer, Singapore (2018)

    Google Scholar 

  41. Malomed, B.A., Winful, H.G.: Stable solitons in two-component active systems. Phys. Rev. E 53, 5365 (1996)

    Article  ADS  Google Scholar 

  42. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zhurn. Eksp. Teor. Fiz. 65, 505 (1973)

    ADS  Google Scholar 

  43. Messiah, A.: Quantum Mechanics, vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  44. Mostafazadeh, A.: Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 43, 2814 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  45. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in \(\mathcal {PT}\) periodic potentials. Phys. Rev. Lett. 100, 30402 (2008)

    Google Scholar 

  46. Nazari, F., Nazari, M., Moravvej-Farshi, M.K.: A 2 × 2 spatial optical switch based on \(\mathcal {PT}\)-symmetry. Opt. Lett. 36, 4368 (2011)

    Article  ADS  Google Scholar 

  47. Ögren, M., Abdullaev, F.Kh., Konotop, V.V.: Solitons in a \(\mathcal {PT}\)-symmetric χ (2) coupler. Opt. Lett. 42, 4079 (2017)

    Article  ADS  Google Scholar 

  48. Pare, C., Florjanczyk, M.: Approximate model of soliton dynamics in all-optical couplers. Phys. Rev. A 41, 6287 (1990)

    Article  ADS  Google Scholar 

  49. Pelinovsky, D.E., Zezyulin, D.A., Konotop, V.V.: Global existence of solutions to coupled \(\mathcal {PT}\)-symmetric nonlinear Schrödinger equations. Int. J. Theor. Phys. 54, 3920 (2015)

    Article  ADS  Google Scholar 

  50. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B 25, 16 (1983)

    Article  Google Scholar 

  51. Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear \(\mathcal {PT}\)-symmetric optical structures. Phys. Rev. A 82, 043803 (2010)

    Google Scholar 

  52. Ruschhaupt, A., Delgado, F., Muga, J.G.: Physical realization of \(\mathcal {PT}\)-symmetric potential scattering in a planar slab waveguide. J. Phys. A Math. Theor. 38, L171 (2005)

    Google Scholar 

  53. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  54. Sukhorukov, A.A., Xu, Z., Kivshar, Yu.S.: Nonlinear suppression of time reversals in \(\mathcal {PT}\)-symmetric optical couplers. Phys. Rev. A 82, 043818 (2010)

    Google Scholar 

  55. Stegeman, G.I., Hagan, D.J., Torner, L.: χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron. 28, 1691 (1996)

    Article  Google Scholar 

  56. Wright, E.M., Stegeman, G.I., Wabnitz, S.: Solitary-wave decay and symmetry-breaking instabilities in two-mode fibers Phys. Rev. A 40, 4455 (1989)

    Article  Google Scholar 

  57. Wasak, T., Szankowski, P., Konotop, V.V., Trippenbach, M.: Four-wave mixing in a parity-time (\(\mathcal {PT}\))-symmetric coupler. Opt. Lett. 40, 5291 (2015)

    Article  ADS  Google Scholar 

  58. Yang, J.: Partially \(\mathcal {PT}\)-symmetric optical potentials with all-real spectra and soliton families in multidimensions. Opt. Lett. 39, 1133 (2014)

    Article  ADS  Google Scholar 

  59. Yang, J.: Classes of non-parity-time-symmetric optical potentials with exceptional-point-free phase transitions. Opt. Lett. 42, 4067 (2017)

    Article  ADS  Google Scholar 

  60. Zyablovsky, A.A., Vinogradov, A.P., Dorofeenko, A.V., Pukhov, A.A., Lisyansky, A.A.: Causality and phase transitions in \(\mathcal {PT}\)-symmetric optical systems. Phys. Rev. A 89, 033808 (2014)

    Google Scholar 

  61. Zezyulin, D.A., Kartashov, Y.V., Konotop, V.V.: \(\mathcal {CPT}\) -symmetric coupler with intermodal dispersion. Opt. Lett. 42, 1273 (2017)

    Article  ADS  Google Scholar 

  62. Zezyulin, D.A., Konotop, V.V.: Stationary modes and integrals of motion in nonlinear lattices with a \(\mathcal {PT}\)-symmetric linear part. J. Phys. A Math. Theor. 46, 415301 (2013)

    Article  MathSciNet  Google Scholar 

  63. Zezyulin, D.A., Konotop, V.V.: Solitons in a Hamiltonian \(\mathcal {PT}\)-symmetric coupler. J. Phys. A Math. Theor. 51, 015206 (2018)

    Google Scholar 

Download references

Acknowledgements

Author is grateful to D. A. Zezyulin, B. A. Malomed, F. Kh. Abdullaev, Y. V. Bludov, G. Huang, C. Hang, Y. V. Kartashov, M. Trippenbah, M. Ögren, R. Driben, D. E. Pelinovsky, J.-P. Dias, M. Figueira, T. Wasak, and P. Szańkowski, for fruitful collaboration on the results reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Konotop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konotop, V.V. (2018). Coupled Nonlinear Schrödinger Equations with Gain and Loss: Modeling \(\mathcal {PT}\) Symmetry. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics