Skip to main content

Nanobiotechnology Approaches for Crop Protection

  • Chapter
  • First Online:
Phytobiont and Ecosystem Restitution

Abstract

Modern agriculture uses nanobiotechnology development as one of the most valuable tools. Using biomolecules in nanotechnology provides new agrochemical nanostructured formulations with different action mechanisms to increase crop productivity and improve their protection decreasing chemical pesticide use. Sustainability and safety of agriculturally cultivated crops are achieved by application of nanoformulations used for control of plant disease related with microorganisms, insects and environmental factors. Nanostructures are also applied for controlled release of nutrients and growth regulators. Safety of nanomaterials use and their environmental impacts are the important factors to acceptance of these new technologies by consumer and agricultural companies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing. ISBN 978-3-319-91161-8 https://www.springer.com/us/book/9783319911601

  • Ali MHH, Al-Qahtani KM (2012) Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aquat Res 38(1):31–37. https://doi.org/10.1016/j.ejar.2012.08.002

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, Saad WZ (2016) Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica. J Photochem Photobiol B 161:441–449. https://doi.org/10.1016/j.jphotobiol.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319

    Chapter  Google Scholar 

  • Bielska D, Karewicz A, Kaminski K, Kielkowicz I, Lachowicz T, Szczubialka K, Nowakowska M (2013) Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. Eur Polym J 49(9):2485–2494. https://doi.org/10.1016/j.eurpolymj.2013.02.012

    Article  CAS  Google Scholar 

  • Bohra A, Sanadhya D, Shukla A (2016) Synthesis, characterization of Mg(OH)2 nanoparticles and its effect on photosynthetic efficiency in two cultivars of Brassica juncea germinated under cadmium toxicity. In: International conference on recent advances in biotechnology & nanobiotechnology, pp 9–21

    Google Scholar 

  • Bose D, Chatterjee S (2016) Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci 6(6):895–901. https://doi.org/10.1007/s13204-015-0496-5

    Article  CAS  Google Scholar 

  • Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137

    Article  CAS  Google Scholar 

  • Choi M-J, Soottitantawat A, Nuchuchua O, Min S-G, Ruktanonchai U (2009) Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion–diffusion method. Food Res Int 42(1):148–156

    Article  CAS  Google Scholar 

  • Corradetti B, Ferrari M (2016) Nanotechnology for mesenchymal stem cell therapies. J Control Release 240:242–250

    Article  CAS  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa JT, Forim MR, Costa ES, De Souza JR, Mondego JM, Junior ALB (2014) Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on beans. J Stored Prod Res 56:49–53

    Article  Google Scholar 

  • Davod T, Reza Z, Ali VA, Mehrdad C (2011) Effects of nanosilver and nitroxin bio-fertilizer on yield and yield components of potato minitubers. Int J Agric Biol 13(6):986–990

    CAS  Google Scholar 

  • Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  • Elemike EE, Onwudiwe DC, Ekennia AC, Ehiri RC, Nnaji NJ (2017) Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: antimicrobial, larvicidal and photocatalytic evaluations. Mater Sci Eng C 75:980–989

    Article  CAS  Google Scholar 

  • Faraz M, Abbasia A, Naqvia FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensors Actuators B 269:195–202. https://doi.org/10.1016/j.snb.2018.04.110

    Article  CAS  Google Scholar 

  • Farnia A, Ghorbani A (2014) Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of red bean (Phaseolus vulgaris L.). Int J Biosci (IJB) 5(12):296–303

    Article  CAS  Google Scholar 

  • Farnia A, Omidi MM (2015) Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (Zea mays L.), under water stress condition. Indian J Nat Sci 5(29):4614–4624

    Google Scholar 

  • Feng B-H, Peng L-F (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88(2):576–582

    Article  CAS  Google Scholar 

  • Forim MR, Costa ES, da Silva MF, Fernandes JB, Mondego JM, Boiça Junior AL (2013) Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139

    Article  CAS  Google Scholar 

  • Garg A, Singh S (2011) Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf B Biointerfaces 87(2):280–288

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  Google Scholar 

  • Gomez-Estaca J, Balaguer M, Gavara R, Hernandez-Munoz P (2012) Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll 28(1):82–91

    Article  CAS  Google Scholar 

  • Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011) The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146(2):144–150

    Article  CAS  Google Scholar 

  • Gupta M, Arias T, Williams N, Bos R, Tattje D (1985) Safrole, the main component of the essential oil from Piper auritum of Panama. J Nat Prod 48:330–343

    Article  CAS  Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, pp 247–266

    Google Scholar 

  • Hae-Jun P, Sung-Ho K, Hwa-Jung K, Seong-Ho C (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302. https://doi.org/10.5423/PPJ.2006.22.3.295

    Article  Google Scholar 

  • He L, Wang M, Zhang G, Qiu G, Cai D, Wu Z, Zhang X (2015) Remediation of Cr (VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks. J Hazard Mater 294:64–69

    Article  CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2016) Interactions between CeO2 nanoparticles and the desert plant mesquite: a spectroscopy approach. ACS Sustain Chem Eng 4(3):1187–1192

    Article  CAS  Google Scholar 

  • Higueras L, López-Carballo G, Cerisuelo JP, Gavara R, Hernández-Muñoz P (2013) Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydr Polym 97(2):262–268

    Article  CAS  Google Scholar 

  • Janmohammadi M, Navid A, Segherloo AE, Sabaghnia N (2016) Impact of nano-chelated micronutrients and biological fertilizers on growth performance and grain yield of maize under deficit irrigation condition. Biologija 62(2):134–147

    Google Scholar 

  • Jayaprakash N, Vijaya JJ, Kaviyarasu K, Kombaiah K, Kennedy LJ, Ramalingam RJ, Munusamy MA, Al-Lohedan HA (2017) Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J Photochem Photobiol B Biol 169:178–185

    Article  CAS  Google Scholar 

  • Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P (2014) Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crop Prod 52:714–720

    Article  CAS  Google Scholar 

  • Jerobin J, Sureshkumar R, Anjali C, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756

    Article  CAS  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  Google Scholar 

  • Jo YK, Cromwell W, Jeong HK, Thorkelson J, Roh JH, Shin DB (2015) Use of silver nanoparticles for managing Gibberella fujikuroi on rice seedlings. Crop Prot 74:65–69

    Article  CAS  Google Scholar 

  • Kalboush ZA, Hassan A, Gabr W (2016) Control of rice blast and brown spot diseases by synthesized zinc oxide nanoparticles. Egypt J Biol Pest Control 26(4):713–720

    Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17. https://doi.org/10.1016/j.matlet.2013.10.011

    Article  CAS  Google Scholar 

  • Keawchaoon L, Yoksan R (2011) Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces 84(1):163–171

    Article  CAS  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231. https://doi.org/10.3923/ppj.2014.214.231

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kiruba D, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15(1):1319

    Article  Google Scholar 

  • Kumar PV, Shameem U, Kollu P, Kalyani R, Pammi S (2015) Green synthesis of copper oxide nanoparticles using aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bio Nano Sci 5(3):135–139

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199. https://doi.org/10.5941/MYCO.2011.39.3.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim G-O, Jang S-A, Song KB (2010) Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. J Food Eng 98(4):415–420

    Article  CAS  Google Scholar 

  • López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016) Effect of cobalt ferrite (CoFe2 O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52

    Article  Google Scholar 

  • Mahanty A, Mishra S, Bosu R, Maurya U, Netam SP, Sarkar B (2013) Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J Microbiol 53(4):438–446

    Article  CAS  Google Scholar 

  • Mardalipour M, Zahedi H, Sharghi Y (2014) Evaluation of nano biofertilizer efficiency on agronomic traits of spring wheat at different sowing date. In: Biological forum, vol 2. Research Trend, p 349

    Google Scholar 

  • Martin L, Liparoti S, Della Porta G, Adami R, Marqués J, Urieta J, Mainar A, Reverchon E (2013) Rotenone coprecipitation with biodegradable polymers by supercritical assisted atomization. J Supercrit Fluids 81:48–54

    Article  CAS  Google Scholar 

  • McSpadden G B, Fravel D (2002) Biological control of plant pathogens: research, commercialization and application in the USA. Plant Health Prog Online. https://doi.org/10.1094/PHP-2002-0510-01-RV

  • Medina N (2001) Uso de extractos botánicos en control de plagas y enfermedades. Avances en el fomento de productos fitosanitarios no sintéticos. Manejo Integrado de Plagas (Costa Rica) 59:76–77

    Google Scholar 

  • Mir S, Sirousmehr A, Shirmohammadi E (2015) Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (speedfeed hybrid). Int J Biosci (IJB) 6(4):157–164

    Article  CAS  Google Scholar 

  • MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 85(2):360–365

    Article  CAS  Google Scholar 

  • Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim Biophys Acta (BBA) Protein Proteomics 1864(8):932–944

    Article  CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7(1):2612. https://doi.org/10.1038/s41598-017-02737-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140(2):185–192

    Article  CAS  Google Scholar 

  • Narendhran S, Sivaraj R (2016) Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. Bull Mater Sci 39(1):1–5

    Article  CAS  Google Scholar 

  • Nigam S, Purohit R (1962) Chemical examination of the essential oil of the leaves of Piper betle. Riechstoffe Aromen 12:185–190

    CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980. https://doi.org/10.1021/nn4034794

    Article  CAS  PubMed  Google Scholar 

  • Padalia H, Baluja S, Chanda S (2017) Effect of pH on size and antibacterial activity of Salvadora oleoides leaf extract-mediated synthesis of zinc oxide nanoparticles. Bio Nano Sci 7:1–10

    Google Scholar 

  • Patra JK, Baek KH (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:167. https://doi.org/10.3389/fmicb.2017.00167

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra A, Adhikari T, Bhardwaj A (2016) Enhancing crop productivity in salt-affected environments by stimulating soil biological processes and remediation using nanotechnology. In: Innovative saline agriculture. Springer, pp 83–103

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961. https://doi.org/10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. ISBN 978–3–319-99570-0 https://www.springer.com/978-3-319-99570-0

  • Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A 112:384–387. https://doi.org/10.1016/j.saa.2013.04.072

    Article  CAS  Google Scholar 

  • Ramos L, Da Silva M, Luz A, Zoghbi M, Maia J (1986) Essential oil of Piper marginatum. J. Nat Prod 49:712–713

    Article  CAS  Google Scholar 

  • Rao NH, Lakshmidevi N, Pammi S, Kollu P, Ganapaty S, Lakshmi P (2016) Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng C 62:553–557

    Article  CAS  Google Scholar 

  • Raskin I, Ribnicky D, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno D, Ripoll C, Yakoby N, O’Neal J, Cornwell T, Pastor I, Fridlender B (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20(12):522–531

    Article  CAS  Google Scholar 

  • Riyajan S-A, Sakdapipanich JT (2009) Development of a controlled release neem capsule with a sodium alginate matrix, crosslinked by glutaraldehyde and coated with natural rubber. Polym Bull 63(4):609–622

    Article  CAS  Google Scholar 

  • Robles-García MA, Rodríguez-Félix F, Márquez-Ríos E, Aguilar JA, Barrera-Rodríguez A, Aguilar J, Ruiz-Cruz S, Del-Toro-Sánchez CL (2016) Applications of nanotechnology in the agriculture, food, and pharmaceuticals. J Nanosci Nanotechnol 16(8):8188–8207

    Article  Google Scholar 

  • Sahayaraj K, Roobadevi M, Rajesh S, Azizi S (2015) Vernonia cinerea (L.) Less. silver nanocomposite and its antibacterial activity against a cotton pathogen. Res Chem Intermed 41(8):5495–5507

    Article  CAS  Google Scholar 

  • Sajomsang W, Nuchuchua O, Gonil P, Saesoo S, Sramala I, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2012) Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym 89(2):623–631

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33–58

    Chapter  Google Scholar 

  • Saratale RG, Shin H-S, Kumar G, Benelli G, Ghodake GS, Jiang YY, Kim DS, Saratale GD (2017) Exploiting fruit byproducts for eco-friendly nanosynthesis: citrus× clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells. Environ Sci Pollut Res Int 1–14. https://doi.org/10.1007/s11356-017-8724-z

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92. https://doi.org/10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  • Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, Sundaramanickam A (2014) Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl Nanosci 4(7):881–888

    Article  CAS  Google Scholar 

  • Sharifi RS (2016) Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Žemdirbystė (Agriculture) 103(3):251–258

    Article  Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Prasad S (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12(1):353–366

    Article  CAS  Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 129:255–258

    Article  CAS  Google Scholar 

  • Subramanian K, Muniraj I, Uthandi S (2016) Role of actinomycete-mediated nanosystem in agriculture. In: Plant growth promoting actinobacteria. Springer, pp 233–247

    Google Scholar 

  • Suresh G, Geetha G, Daniel W, Pradeep N, Malathi R, Rajan S (2002) Insect antifeedant activity of tetranortriterpenoids from the rutales. A perusal of structural relations. J Agric Food Chem 50(16):4484–4490

    Article  CAS  Google Scholar 

  • Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol 163:311–318

    Article  CAS  Google Scholar 

  • Valdés E, Aldana L, Gutiérrez O, Hernández R, Salinas S (2006) Evaluación de fitoextracto sobre larvas de Scyphophorus acupunctatus plaga de nardo y agave. Proc Interam Soc Trop Hortic 50:130–132

    Google Scholar 

  • Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K-J, Cho M, Lee S-M, Park J-H, Oh S-G, Bang K-S, Oh B-T (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng 37(10):1935–1943

    Article  CAS  Google Scholar 

  • Wang L, Liu C-C, Wang Y-Y, Xu H, Su H, Cheng X (2016) Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract. Curr Appl Phys 16(9):969–973

    Article  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO 2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Zhang Y, Niu Y, Luo Y, Ge M, Yang T, Yu LL, Wang Q (2014) Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem 142:269–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Cutiño, G. et al. (2018). Nanobiotechnology Approaches for Crop Protection. In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_1

Download citation

Publish with us

Policies and ethics