Skip to main content

Genomic Approaches to Eye Diseases: An Asian Perspective

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 583 Accesses

Abstract

Recent advances in genomic technologies, particularly next-generation sequencing (NGS) methods, have brought a paradigm shift in discovering eye disease-associated genetic variants from linkage and genome-wide association studies to NGS-based genome/exome studies. Whole-genome sequencing (WGS) remains prohibitively expensive for most applications and requires concurrent development of bioinformatic approaches to expeditiously analyze the large data sets; whole-exome sequencing (WES) is now made as a viable approach to uncover unknown etiology with a limited number of probands with eye disease. WES focuses on only the protein-coding sequence of human genome, has become a powerful tool with many advantages in the research setting, and moreover is now being implemented into the clinical diagnostic arena. Here, we review the current literature on technical approaches and to provide recommendations for bioinformatic analysis focusing WES and WGS methods. We highlight its successful applications for identifying causative variants in various eye diseases with emphasis on Asian data and discuss its implementation in the clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ankala A, Hegde MR. Gamut of genetic testing for neonatal care. Clin Perinatol. 2015;42(2):217–26. vii

    Article  Google Scholar 

  2. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11.

    Article  CAS  Google Scholar 

  3. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2011;13(2):135–45.

    Article  Google Scholar 

  4. Visscher PM, et al. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  CAS  Google Scholar 

  5. Eid J, Fehr A, Gray J, Luong K, Lyle J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133e138.

    Article  Google Scholar 

  6. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265e270.

    Article  Google Scholar 

  7. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.

    Article  CAS  Google Scholar 

  8. Rosenfeld JA, Mason CE, Smith TM. Limitations of the human reference genome for personalized genomics. PLoS One. 2012;7(7):e40294.

    Article  CAS  Google Scholar 

  9. Lelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C. Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum Mutat. 2015;36(8):815–22.

    Article  CAS  Google Scholar 

  10. Lelieveld SH, Veltman JA, Gilissen C. Novel bioinformatic developments for exome sequencing. Hum Genet. 2016;135(6):603–14.

    Article  CAS  Google Scholar 

  11. Bao R, Huang L, Andrade J, et al. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform. 2014;13(suppl 2):67–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan PA, Duraisamy S, Miller PJ, et al. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1,MSH2, MECP2, and tyrosinase (TYR). Hum Mutat. 2007;28(7):683–93.

    Article  CAS  Google Scholar 

  13. Tetreault M, Bareke E, Nadaf J, Alirezaie N, Majewski J. Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities. Expert Rev Mol Diagn. 2015;15(6):749–60.

    Article  CAS  Google Scholar 

  14. Tan R, Wang Y, Kleinstein SE, et al. An evaluation of copy number variation detection tools from whole-exome sequencing data. Hum Mutat. 2014;35(7):899–907.

    Article  CAS  Google Scholar 

  15. Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet. 2013;206(12):432–40.

    Article  CAS  Google Scholar 

  16. Tattini L, D’Aurizio R, Magi A. Detection of genomic structural variants from next-generation sequencing data. Front Bioeng Biotechnol. 2015;3:92.

    Article  Google Scholar 

  17. Ravnan JB, Tepperberg JH, Papenhausen P, et al. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet. 2006;43(6):478–89.

    Article  CAS  Google Scholar 

  18. MacArthur DG, Balasubramanian S, Frankish A, Huang N, et al. A systematic survey of lossof-function variants in human protein-coding genes. Science. 2012;335:823e828.

    Article  Google Scholar 

  19. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508:469e476.

    Article  Google Scholar 

  20. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  CAS  Google Scholar 

  21. Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017;18(1):77.

    Article  Google Scholar 

  22. Fritsche LG, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48(2):134–43.

    Article  CAS  Google Scholar 

  23. Zhan X, et al. Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nat Genet. 2013;45(11):1375–9.

    Article  CAS  Google Scholar 

  24. UK10K Consortium, Walter K, Min JL, Huang J, Crooks L, Memari Y, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526:82–90.

    Article  Google Scholar 

  25. Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017;18(1):14.

    Article  Google Scholar 

  26. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5e23.

    Article  Google Scholar 

  27. Nicolae DL. Association tests for rare variants. Annu Rev Genomics Hum Genet. 2016;17:117–30.

    Article  CAS  Google Scholar 

  28. Gupta S, Chaurasia A, Pathak E, Mishra R, Chaudhry VN, Chaudhry P, Mukherjee A, Mutsuddi M. Whole exome sequencing unveils a frameshift mutation in CNGB3 for cone dystrophy: a case report of an Indian family. Medicine (Baltimore). 2017;96(30):e7490.

    Article  CAS  Google Scholar 

  29. Lazar CH, Kimchi A, Namburi P, Mutsuddi M, Zelinger L, Beryozkin A, Ben-Simhon S, Obolensky A, Ben-Neriah Z, Argov Z, Pikarsky E, Fellig Y, Marks-Ohana D, Ratnapriya R, Banin E, Sharon D, Swaroop A. Nonsyndromic early-onset cone-rod dystrophy and limb-girdle muscular dystrophy in a consanguineous Israeli family are caused by two independent yet linked mutations in ALMS1 and DYSF. Hum Mutat. 2015;36(9):836–41.

    Article  CAS  Google Scholar 

  30. Maranhao B, Biswas P, Gottsch AD, Navani M, Naeem MA, Suk J, Chu J, Khan SN, Poleman R, Akram J, Riazuddin S, Lee P, Riazuddin SA, Hejtmancik JF, Ayyagari R. Investigating the molecular basis of retinal degeneration in a familial cohort of Pakistani decent by exome sequencing. PLoS One. 2015;10(9):e0136561.

    Article  Google Scholar 

  31. Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S, Sebai MA, Shamia A, Ray-Zack MD, Nassan M, Al-Hassnan ZN, Rahbeeni Z, Waheeb S, Alkharashi A, Abboud E, Al-Hazzaa SA, Alkuraya FS. Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res. 2013;23(2):236–47.

    Article  CAS  Google Scholar 

  32. Huang L, Zhang Q, Li S, Guan L, Xiao X, Zhang J, Jia X, Sun W, Zhu Z, Gao Y, Yin Y, Wang P, Guo X, Wang J, Zhang Q. Exome sequencing of 47 Chinese families with cone-rod dystrophy: mutations in 25 known causative genes. PLoS One. 2013;8(6):e65546.

    Article  CAS  Google Scholar 

  33. Lazar CH, Mutsuddi M, Kimchi A, Zelinger L, Mizrahi-Meissonnier L, Marks-Ohana D, Boleda A, Ratnapriya R, Sharon D, Swaroop A, Banin E. Whole exome sequencing reveals GUCY2D as a major gene associated with cone and cone-rod dystrophy in Israel. Invest Ophthalmol Vis Sci. 2014;56(1):420–30.

    Article  Google Scholar 

  34. Katagiri S, Akahori M, Sergeev Y, Yoshitake K, Ikeo K, Furuno M, Hayashi T, Kondo M, Ueno S, Tsunoda K, Shinoda K, Kuniyoshi K, Tsurusaki Y, Matsumoto N, Tsuneoka H, Iwata T. Whole exome analysis identifies frequent CNGA1 mutations in Japanese population with autosomal recessive retinitis pigmentosa. PLoS One. 2014;9(9):e108721.

    Article  Google Scholar 

  35. Di Y, Huang L, Sundaresan P, Li S, Kim R, Ballav Saikia B, Qu C, Zhu X, Zhou Y, Jiang Z, Zhang L, Lin Y, Zhang D, Li Y, Zhang H, Yin Y, Lu F, Zhu X, Yang Z. Whole-exome sequencing analysis identifies mutations in the EYS Gene in retinitis pigmentosa in the Indian population. Sci Rep. 2016;6:19432.

    Article  CAS  Google Scholar 

  36. Yang Y, Yang Y, Huang L, Zhai Y, Li J, Jiang Z, Gong B, Fang H, Kim R, Yang Z, Sundaresan P, Zhu X, Zhou Y. Whole exome sequencing identified novel CRB1 mutations in Chinese and Indian populations with autosomal recessive retinitis pigmentosa. Sci Rep. 2016;6:33681.

    Article  CAS  Google Scholar 

  37. Zeitz C, Jacobson SG, Hamel CP, Bujakowska K, Neuillé M, Orhan E, Zanlonghi X, Lancelot ME, Michiels C, Schwartz SB, Bocquet B, Congenital Stationary Night Blindness Consortium, Antonio A, Audier C, Letexier M, Saraiva JP, Luu TD, Sennlaub F, Nguyen H, Poch O, Dollfus H, Lecompte O, Kohl S, Sahel JA, Bhattacharya SS, Audo I. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2013;92(1):67–75.

    Article  CAS  Google Scholar 

  38. Wang H, Chen X, Dudinsky L, Patenia C, Chen Y, Li Y, Wei Y, Abboud EB, Al-Rajhi AA, Lewis RA, Lupski JR, Mardon G, Gibbs RA, Perkins BD, Chen R. Exome capture sequencing identifies a novel mutation in BBS4. Mol Vis. 2011;17:3529–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jia X, Zhang F, Bai J, Gao L, Zhang X, Sun H, Sun D, Guan R, Sun W, Xu L, Yue Z, Yu Y, Fu S. Combinational analysis of linkage and exome sequencing identifies the causative mutation in a Chinese family with congenital cataract. BMC Med Genet. 2013;14:107.

    Article  CAS  Google Scholar 

  40. Kondo Y, Saitsu H, Miyamoto T, Lee BJ, Nishiyama K, Nakashima M, Tsurusaki Y, Doi H, Miyake N, Kim JH, Yu YS, Matsumoto N. Pathogenic mutations in two families with congenital cataract identified with whole-exome sequencing. Mol Vis. 2013;19:384–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen JH, Qiu J, Chen H, Pang CP, Zhang M. Rapid and cost-effective molecular diagnosis using exome sequencing of one proband with autosomal dominant congenital cataract. Eye (Lond). 2014;28(12):1511–6.

    Article  Google Scholar 

  42. Shi Y, Li Y, Zhang D, Zhang H, Li Y, Lu F, Liu X, He F, Gong B, Cai L, Li R, Liao S, Ma S, Lin H, Cheng J, Zheng H, Shan Y, Chen B, Hu J, Jin X, Zhao P, Chen Y, Zhang Y, Lin Y, Li X, Fan Y, Yang H, Wang J, Yang Z. Exome sequencing identifies ZNF644 mutations in high myopia. PLoS Genet. 2011;7(6):e1002084.

    Article  CAS  Google Scholar 

  43. Micheal S, Siddiqui SN, Zafar SN, Venselaar H, Qamar R, Khan MI, den Hollander AI. Whole exome sequencing identifies a heterozygous missense variant in the PRDM5 gene in a family with Axenfeld-Rieger syndrome. Neurogenetics. 2016;17(1):17–23.

    Article  CAS  Google Scholar 

  44. Zheng SL, Zhang HL, Lin ZL, Kang QY. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family. Int J Mol Med. 2015;36(4):1035–41.

    Article  CAS  Google Scholar 

  45. Ajmal M, Khan MI, Neveling K, Tayyab A, Jaffar S, Sadeque A, Ayub H, Abbasi NM, Riaz M, Micheal S, Gilissen C, Ali SH, Azam M, Collin RW, Cremers FP, Qamar R. Exome sequencing identifies a novel and a recurrent BBS1 mutation in Pakistani families with Bardet-Biedl syndrome. Mol Vis. 2013;19:644–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ullah E, Nadeem Saqib MA, Sajid S, Shah N, Zubair M, Khan MA, Ahmed I, Ali G, Dutta AK, Danda S, Lao R, Ling-Fung Tang P, Kwok PY, Ansar M, Slavotinek A. Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp Eye Res. 2016;146:163–71.

    Article  CAS  Google Scholar 

  47. Micheal S, Siddiqui SN, Zafar SN, Iqbal A, Khan MI, den Hollander AI. Identification of novel variants in LTBP2 and PXDN using whole-exome sequencing in developmental and congenital glaucoma. PLoS One. 2016;11(7):e0159259.

    Article  Google Scholar 

  48. Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135(3):359–62.

    Article  CAS  Google Scholar 

  49. Nishiguchi KM, Tearle RG, Liu YP, Oh EC, Miyake N, Benaglio P, Harper S, Koskiniemi-Kuendig H, Venturini G, Sharon D, et al. Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proc Natl Acad Sci U S A. 2013;110:16139–44.

    Article  CAS  Google Scholar 

  50. Yang Y, Yang C, Zhu Y, Chen H, Zhao R, He X, Tao L, Wang P, Zhou L, Zhao L, Tu M, Dong Z, Chen H, Xie Z. Intragenic and extragenic disruptions of FOXL2 mapped by whole genome low-coverage sequencing in two BPES families with chromosome reciprocal translocation. Genomics. 2014;104(3):170–6.

    Article  CAS  Google Scholar 

  51. Yang L, Li Z, Mei M, Fan X, Zhan G, Wang H, Huang G, Wang M, Tian W, Zhou W. Whole genome sequencing identifies a novel ALMS1 gene mutation in two Chinese siblings with Alström syndrome. BMC Med Genet. 2017;18(1):75.

    Article  Google Scholar 

  52. Yang Y, Muzny DM, Xia F, Niu Z, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–9.

    Article  CAS  Google Scholar 

  53. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, Friez MJ, Funke BH, Hegde MR, Lyon E. Working Group of the American College of medical genetics and genomics laboratory (ACMG) quality assurance committee clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–47.

    Article  Google Scholar 

  54. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, Herman GE, Hufnagel SB, Klein TE, Korf BR, McKelvey KD, Ormond KE, Richards CS, Vlangos CN, Watson M, Martin CL, Miller DT. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55.

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Compliance with Ethical Requirements

No animal or human studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharanidharan Devarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devarajan, B., Vanniarajan, A., Sundaresan, P. (2019). Genomic Approaches to Eye Diseases: An Asian Perspective. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics