Skip to main content

Emergence of Bias During the Synthesis and Amplification of cDNA for scRNA-seq

  • Chapter
  • First Online:
Single Cell Biomedicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1068))

Abstract

The advent of single-cell omics technology has promoted our understanding of the genomic, epigenomic, and transcriptomic heterogeneity in individual cells. Compared to traditional sequencing studies using bulk cells, single-cell transcriptome technology is naturally more dynamic for in depth analysis of genomic variation resulting from cell division and is useful in unraveling the regulatory mechanisms of gene networks in many diseases. However, there are still some limitations of current single-cell RNA sequencing (scRNA-seq) protocols. Biases that arise during the RNA reverse transcription and cDNA pre-amplification steps are the most common problems and play pivotal roles in limiting the quantitative accuracy of scRNA-seq. In this review, we will describe how these biases emerge and impact scRNA-seq protocols. Moreover, we will introduce several current and convenient modified scRNA-seq methods that allow for bias to be decreased and estimated.

Authors Qiankun Luo and Hui Zhang have equally contributed to this chapter as the first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630

    Article  CAS  PubMed  Google Scholar 

  2. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340

    Article  CAS  PubMed  Google Scholar 

  3. Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM (2017) Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol 33(2):83–97. PMID: 27761761

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Zhu B, Wang X (2017 Oct) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33(5):423–427. https://doi.org/10.1007/s10565-017-9400-2

    Article  PubMed  Google Scholar 

  5. Deng Q, Ramskold D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167):193–196

    Article  CAS  PubMed  Google Scholar 

  6. Wang W, Wang X (2017) Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol 33(3):207–210. https://doi.org/10.1007/s10565-017-9396-7. PMID: 28474250

    Article  PubMed  CAS  Google Scholar 

  7. Treutlein B, Brownfield DG, Wu AR, Neff NF et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grün D, Lyubimova A, Kester L, Wiebrands K et al (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525(7568):251–255

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Gao D, Wang X (2018 Feb) Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol 34(1):1–6. https://doi.org/10.1007/s10565-017-9404-y

    Article  PubMed  CAS  Google Scholar 

  10. Shalek AK, Satija R, Shuga J, Trombetta JJ et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505):363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel AP, Tirosh I, Trombetta JJ, Shalek AK et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang DC, Wang W, Zhu B, Wang X (2018 Jan 6) Lung cancer heterogeneity and new strategies for drug therapy. Annu Rev Pharmacol Toxicol 58:531–546. https://doi.org/10.1146/annurev-pharmtox-010716-104523

    Article  PubMed  CAS  Google Scholar 

  13. Streets AM, Zhang X, Cao C, Pang Y et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A 111(19):7048–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu Z, Qiu S, Shao K, Hou Y (2017) Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol https://doi.org/10.1007/s10565-017-9418-5

  15. Klein AM, Mazutis L, Akartuna I, Tallapragada N et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58(4):610–620

    Article  CAS  PubMed  Google Scholar 

  17. Ponten F, Gry M, Fagerberg L, Lundberg E, Asplund A et al (2009) A global view of protein expression in human cells, tissues, and organs. Mol Syst Biol 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Pan J, Jia Y, Li D, Min Z, Su X, Yuan H, Shen G, Cao S, Zhu L, Wang X (2017 Feb) Effect of memory CD4+ T cells’ signal transducer and activator of transcription (STATs) functional shift on cytokine-releasing properties in asthma. Cell Biol Toxicol 33(1):27–39. https://doi.org/10.1007/s10565-016-9357-6

    Article  PubMed  CAS  Google Scholar 

  19. Lee JH, Daugharthy ER, Scheiman J, Kalhol R, Ferrante TC et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10(3):442–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krishnaswami SR, Grindberg RV, Novotny M, Venepally P et al (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11(3):499–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10(11):1093–1095

    Article  CAS  PubMed  Google Scholar 

  23. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16(3):133–145

    Article  CAS  PubMed  Google Scholar 

  24. Islam S, Zeisel A, Joost S, La Manno G, Zajac P et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166

    Article  CAS  PubMed  Google Scholar 

  25. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG et al (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 7(10):807–812

    Article  CAS  PubMed  Google Scholar 

  26. Sasagawa Y, Nikaido I, Hayashi T et al (2013) Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14(4):R31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S et al (2015) SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res 43(9):e60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Güell M, Yus E, Lluch-Senar M, Serrano L (2011) Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 9(9):658–669

    Article  CAS  PubMed  Google Scholar 

  29. Kang Y, Norris MH, Zarzycki-Siek J, Nierman WC, Donachie SP et al (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res 21(6):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42(14):8845–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fan X, Zhang X, Wu X, Guo H, Hu Y et al (2015) Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol 16(1):148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382

    Article  CAS  PubMed  Google Scholar 

  33. Picelli S, Faridani OR, Björklund AK et al (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181

    Article  CAS  PubMed  Google Scholar 

  34. Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810

    Article  CAS  PubMed  Google Scholar 

  35. Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang F, Lao K, Surani MA (2011) Development and applications of single cell transcriptome analysis. Nat Methods 8(4 Suppl):S6–S11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep 2(3):666–673

    Article  CAS  PubMed  Google Scholar 

  38. Fan HC, Fu GK, Fodor SP (2015) Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347(6222):1258367

    Article  CAS  PubMed  Google Scholar 

  39. Grün D, Kester L, van Oudenaarden A (2014) Validation of noise models for singlecell transcriptomics. Nat Methods 11(6):637–640

    Article  CAS  PubMed  Google Scholar 

  40. Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 17:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bacher R, Chu LF, Leng N, Gasch AP, Thomson JA, Stewart RM et al (2017 Jun) SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 14(6):584–586. https://doi.org/10.1038/nmeth.4263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Niu F, Wang DC, Lu JP, Wu W, Wang XD (2016 Sep) Potentials of single-cell biology in identification and validation of disease biomarkers. J Cell Mol Med 20(9):1789–1795

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yu Y, Tsang JC, Wang C, Clare S, Wang J, Chen X et al (2016 Nov 3) Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 539(7627):102–106. https://doi.org/10.1038/nature20105

    Article  PubMed  CAS  Google Scholar 

  44. Wang X (2016 Oct) New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol 32(5):359–361

    Article  PubMed  Google Scholar 

  45. Shi L, Zhu B, Xu M, Wang X (2017 Aug 4) Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol 34:109. https://doi.org/10.1007/s10565-017-9405-x

    Article  PubMed  CAS  Google Scholar 

  46. Chen C, Shi L, Li Y, Wang X, Yang S (2016) Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol 32(3):169–184. PMID: 27095254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gu J, Wang X (2016) New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol 32(1):1–3. PMID: 26874518

    Article  PubMed  Google Scholar 

  48. Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu D (2016) A new method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol 32(4):323–332. PMID: 27278387

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, Zhu B, Zhang M, Wang X (2017 Apr) Roles of immune microenvironment heterogeneity in therapy-associated biomarkers in lung cancer. Semin Cell Dev Biol 64:90–97

    Article  CAS  PubMed  Google Scholar 

  50. Xu M, Wang X (2017 Aug) Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 33(4):361–371. https://doi.org/10.1007/s10565-017-9393-x

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest Statement

Qiankun Luo and Hui Zhang have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Q., Zhang, H. (2018). Emergence of Bias During the Synthesis and Amplification of cDNA for scRNA-seq. In: Gu, J., Wang, X. (eds) Single Cell Biomedicine. Advances in Experimental Medicine and Biology, vol 1068. Springer, Singapore. https://doi.org/10.1007/978-981-13-0502-3_12

Download citation

Publish with us

Policies and ethics