Skip to main content

Nitric Oxide and Reactive Oxygen Species Interactions in Plant Tolerance and Adaptation to Stress Factors

  • Chapter
  • First Online:
Biotic and Abiotic Stress Tolerance in Plants
  • 1812 Accesses

Abstract

The research on the regulatory role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants’ life indisputably proved the involvement of these compounds in numerous life processes, including developmental and stress ones. Generation of both ROS and RNS occurs concomitantly, leading to some specific plant responses, and each group of compound interacts with the other one, which involves complexity and is sometimes difficult to understand and study. For this reason, the chapter will integrate the papers on biotic and abiotic stress response and provides an overview of the molecular mechanism of:

  • ROS/RNS signalling

  • The phenotypic response

  • The perspective of use ROS and RNS in biotechnology and food production

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Article  PubMed  CAS  Google Scholar 

  • Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata–ribulose-1, 5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872

    Article  PubMed  CAS  Google Scholar 

  • Albertos P, Romero-Puertas MC, Tatematsu K et al (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669. https://doi.org/10.1038/ncomms9669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ambrozova G, Martiskova H, Koudelka A et al (2016) Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free Radic Biol Med 90:252–260

    Article  PubMed  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź E (2011) The messenger of nitric oxide in cadmium-challenged plants. Plant Sci 181:612–620

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1994a) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 129–142

    Google Scholar 

  • Asada K (1994b) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense system in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Bączek-Kwinta R, Miszalski Z, Niewiadomska E (2005) Physiological role of reactive oxygen species in chill-sensitive plants. Phyton – Annales Rei Botanicae 45:25–37

    Google Scholar 

  • Badiyan D, Wills RBH, Bowyer MC (2004) Use of a nitric oxide donor compound to extend the vase life of cut flowers. Hortscience 39:1371–1372

    CAS  Google Scholar 

  • Bai X, Yang L, Tian M et al (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One 6(6):e20714. https://doi.org/10.1371/journal.pone.0020714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Barna B, Fodor J, Harrach BD et al (2012) The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol Biochem 59:37–43

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Montaldi ER et al (1997) Oxidants and antioxidants during aging of chrysanthemum petals. Plant Sci 129:157–165

    Article  CAS  Google Scholar 

  • Bartoli CC, Casalongué C, Simintacchi M et al (2013) Interactions between hormone and redox signaling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Belenhgi B, Romero-Puertas M-C, Vercammen D et al (2007) Metacaspase activity of Arabidopsis thaliana is regulated by nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129(4):1642–1650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellin D, Asai S, Delledonne M et al (2013) Nitric oxide as a mediator for defense responses. MPMI 26:271–277

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signalling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Boscari A, Del Giudice J, Ferrarini A et al (2013) Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol 161:425–439

    Article  PubMed  CAS  Google Scholar 

  • Bowyer MC, Wills RBH, Badiyan D et al (2003) Extending the postharvest life of carnations with nitric oxide comparison of fumigation and in vivo delivery. Postharvest Biol Technol 30:281–286

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT et al (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Brody AL, Strupinsky EL, Kline LR (eds) (2001) Active packaging for food applications. CRC Press, Boca Raton, pp 112–120

    Google Scholar 

  • Cai MZ, Zhang SN, Wang FM et al (2011) Protective effect of exogenously applied nitric oxide on aluminum-induced oxidative stress in soybean plants. Russ J Plant Physiol 58:791–779

    Article  CAS  Google Scholar 

  • Camejo D, Romero-Puertas MC, Rodríguez-Serrano M et al (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteome 79:87–99

    Article  CAS  Google Scholar 

  • Chaki M, Carreras A, Lopez-Jaramillo J et al (2013) Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (beta-CA) activity under high temperature stress. Nitric Oxide 29:30–33

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signalling and stomatal movement. Plant Cell 16:1143–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen R, Sun S, Wang C et al (2009) The Arabidopsis PARAQUATRESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19:1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zhang L, Zhu C (2015) Exogenous nitric oxide mediates alleviation of mercury toxicity by promoting auxin transport in roots or preventing oxidative stress in leaves of rice seedlings. Acta Physiol Plant 37:197. https://doi.org/10.1007/s11738-015-1931-7

    Article  CAS  Google Scholar 

  • Cheng G, Yang E, Lu W et al (2009) Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening. J Agric Food Chem 57:5799–5804

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ (2015) What is the role of hydrogen peroxide in plant peroxisomes? Plant Biol J 17:1099–1103

    Article  CAS  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R et al (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126. https://doi.org/10.3389/fpls.2013.00126

    Article  PubMed  PubMed Central  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138. https://doi.org/10.3389/fpls.2013.00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA et al (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A et al (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desikan R, Hancock JT, Bright J et al (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desikan R, Last K, Harrett-Williams R et al (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47:907–916

    Article  PubMed  CAS  Google Scholar 

  • Driscoll JA (1997) Acid rain demonstration: the formation of nitrogen oxides as a by-product of high-temperature flames in connection with internal combustion engines. J Chem Educ 74:1424. https://doi.org/10.1021/ed074p1424

    Article  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADPribose. Proc Natl Acad Sci U S A 95:10328–11033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farnese FS, Oliveira JA, Paiva EAS et al (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516. https://doi.org/10.3389/fpls.2017.00516

    Article  PubMed  PubMed Central  Google Scholar 

  • Farneti B, Khomenko J, Cappellin L et al (2015) Dynamic volatile organic compound fingerprinting of apple fruit during processing. LWT Food Sci Technol 63:21–28

    Article  CAS  Google Scholar 

  • Fath A, Bethke PC, Jones RL (2001) Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol 126:156–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feechan A, Kwon E, Yun B-W et al (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci 102:8054–8059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Floryszak-Wieczorek J, Arasimowicz M, Milczarek G et al (2007) Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen. New Phytol 175:718–730

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF et al (1997) Hydrogen peroxide- and glutathione-associated mechanism of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Galatro A, Puntarulo S, Guiamet JJ et al (2013) Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons. Plant Physiol Biochem 66:26–33

    Article  PubMed  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure – is nitrate reductase one of the missing links? Trends Plant Sci 1:20–26

    Article  Google Scholar 

  • Grefen C, Städele K, Ruzicka K et al (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM et al (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  PubMed  CAS  Google Scholar 

  • He YK, Tang RH, Yi H et al (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 5:171. https://doi.org/10.3389/fpls.2015.00171

    Article  Google Scholar 

  • Hess DT, Matsumoto A, Kim S et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Neill SJ, Tang Z et al (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huque R, Wills RBH, Pristijono P et al (2013) Effect of nitric oxide (NO) and associated control treatments on the metabolism of fresh-cut apple slices in relation to development of surface browning. Postharvest Biol Technol 78:16–23

    Article  CAS  Google Scholar 

  • Hura K, Hura T, Bączek-Kwinta R et al (2014) Induction of defense mechanisms in seedlings of oilseed winter rape inoculated with Phoma lingam (Leptosphaeria maculans). Phytoparasitica 42:145–154

    Article  CAS  Google Scholar 

  • Ignarro IJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeandroz S, Wipf D, Stuehr DJ et al (2016) Occurrence, structure, and evolution of nitric oxide synthaselike proteins in the plant kingdom. Sci Signal 9(417):re 2. https://doi.org/10.1126/scisignal.aad4403

    Article  CAS  Google Scholar 

  • Karpinski S, Szechynska-Hebda M (2010) Secret life of plants. From memory to intelligence. Plant Signal Behav 5:1391–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato H, Takemoto D, Kawakita K (2013) Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol Plant 148:371–386

    Article  PubMed  CAS  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H et al (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic 126:402–407

    Article  CAS  Google Scholar 

  • Khan MI, Fatma M, Per TS et al (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462. https://doi.org/10.3389/fpls.2015.00462

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopczewski T, Kuzniak E (2013) Redox signals as a language of interorganellar communication in plant cells. Centr Eur J Biol 8:1153–1183

    CAS  Google Scholar 

  • Kopyra M, Gwóźdź E (2003) Nitric oxide stimulates seeds germination and counteracts the inhibitory effect of heavy metal and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 441:1011–1017

    Article  CAS  Google Scholar 

  • Kreslavski VD, Los DA, Allakhverdiev SI et al (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154

    Article  CAS  Google Scholar 

  • Kusznierewicz B, Bączek-Kwinta R, Bartoszek A et al (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31:2482–2489

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Bertoldo JB, Besson-Bard A et al (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114. https://doi.org/10.3389/fchem.2014.00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee U, Wie C, Fernandez BO et al (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for themotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802. https://doi.org/10.1105/tpc.107.052647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leshem YY (1988) Plant senescence processes and free radicals. Free Rad Biol Med 5:39–49

    Article  PubMed  CAS  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Leterrier M, Airaki M, Palma JM et al (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  PubMed  CAS  Google Scholar 

  • Lin A, Wang Y, Tang J et al (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lozano-Juste J, Leon J (2011) Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol 156:1410–1423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malik SI, Hussain A, Yun BW et al (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544

    Article  PubMed  CAS  Google Scholar 

  • Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28:489–499

    Article  PubMed  CAS  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Padilla-Serrano MN et al (2016) Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiol 170:686–670

    Article  PubMed  CAS  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Padilla MN et al (2017) Nitro-fatty acids in plant signaling: new key mediators of nitric oxide metabolism. Redox Biol 11:554–561. https://doi.org/10.1016/j.redox.2017.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mor A, Koh E, Weiner L et al (2014) Singlet oxygen signatures are detected independent of light in chloroplast in response to multiple stresses. Plant Physiol 165:249–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J et al (2010) NO synthesis and signalling in plants – where do we stand? Physiol Plant 138:372–383

    Article  PubMed  CAS  Google Scholar 

  • Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol 37:113–116

    Article  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  • Pei Z-M, Murata Y, Benning G et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Politycka B (1996) Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiol Plant 18:365–370

    CAS  Google Scholar 

  • Portmann RW, Daniel JS, Ravishankara AS (2012) Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philos Trans R Soc Lond B Biol Sci 367:1256–1264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pristijono P, Wills RBH, Golding JB (2008) Use of the nitric oxide-donor compound, diethylenetriamine-nitric oxide (DETANO), as an inhibitor of browning in apple slices. J Hortic Sci Biotechnol 83:555–558

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Campostrini N, Mattè A et al (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469

    Article  PubMed  CAS  Google Scholar 

  • Rümer S, Kapuganti JG, Kaiser W (2009) Oxidation of hydroxylamines to NO by plant cells. Plant Signal Behav 4:853–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52. https://doi.org/10.1016/j.niox.2017.04.011

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Yamamoto-Katou A, Yoshioka H et al (2006) Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol 47:689–697

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M et al (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    Article  PubMed  CAS  Google Scholar 

  • Shah FR, Ahmad N, Masood KR et al (eds) (2010) Plant adaptation and phytoremediation. Springer, New York, pp 71–97

    Book  Google Scholar 

  • Shi S, Wang G, Wang Y et al (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-Β radiation. Nitric Oxide 13:1–9

    Article  PubMed  CAS  Google Scholar 

  • Silva L, Carvalho H (2013) Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses. Front Plant Sci 4:372. https://doi.org/10.3389/fpls.2013.00372

    Article  PubMed  PubMed Central  Google Scholar 

  • Soegiarto L, Wills RBH (2004) Short term fumigation with nitric oxide gas in air to extend the postharvest life of broccoli, green bean, and bok choy. HortTechnology 14:538–540

    CAS  Google Scholar 

  • Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66:195–204

    Article  CAS  Google Scholar 

  • Sun B, Jing Y, Chen K et al (2007) Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). J Plant Physiol 164:536–543

    Article  PubMed  CAS  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LI et al (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70:492–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuteja N, Chandra M, Tuteja R et al (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 4:227–237

    Article  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A et al (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  PubMed  CAS  Google Scholar 

  • Van Doorn VG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: amitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vellosillo T, Vicente J, Kulasekaran S et al (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154:444–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villacorta L, Gao Z, Schopfer FJ et al (2015) Nitro-fatty acids in cardiovascular regulation and diseases: characteristics and molecular mechanisms. Front Biosci (Landmark Ed) 21:873–889

    Article  Google Scholar 

  • Vreeburg AM, Fry SC (2005) Reactive oxygen species in cell walls. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, pp 197–214

    Google Scholar 

  • Wang BL, Tang XY, Cheng LY et al (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Loake GJ, Chu C (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Front Plant Sci 4:314. https://doi.org/10.3389/fpls.2013.00314

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF et al (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, An L, Lu H et al (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicelluloses content in root cell wall. Planta 230:755–765

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Wang W, Yin H et al (2010) Exogenous nitric oxide improves antioxidative capacity and induces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Xu S, Guerra D, Lee U et al (2013) S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci 4:430. https://doi.org/10.3389/fpls.2013.00430

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhong X, Fan Y et al (2015) Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan). Front Plant Sci 6:360. https://doi.org/10.3389/fpls.2015.00360

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaharah SS, Singh Z (2011) Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains quality in cold-stored ‘Kensington Pride’ mango. Postharvest Biol Technol 60:202–210

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F et al (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang DD, Cheng GP, Li J et al (2007) Effect of nitric oxide on disorder development and quality maintenance of plum stored at low temperature. ISHS Acta Hortic 804:549–554

    Google Scholar 

  • Zhang XW, Dong YJ, Qiu XK et al (2012) Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. Plant Soil Environ 58:111–120

    Article  CAS  Google Scholar 

  • Zhou J, Wang J, Li X et al (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stress. J Exp Bot 65:4371–4383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu S, Zhou E (2007) Effect of nitric oxide on ethylene production in strawberry fruit during storage. Food Chem 100:1517–1522

    Article  CAS  Google Scholar 

  • Zhu S, Lina S, Mengchen L et al (2008) Effect of nitric oxide on reactive oxygen species and antioxidant enzymes in kiwi fruit during storage. J Sci Food Agric 88:2324–2331

    Article  CAS  Google Scholar 

  • Żur I, Dubas E, Krzewska M et al (2014) Antioxidant activity and ROS tolerance in triticale (x Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tissue Organ Cult 119:79–97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Bączek-Kwinta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bączek-Kwinta, R. (2018). Nitric Oxide and Reactive Oxygen Species Interactions in Plant Tolerance and Adaptation to Stress Factors. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-9029-5_9

Download citation

Publish with us

Policies and ethics