Skip to main content

Bismuth Ferrite-Based Piezoelectric Materials

  • Chapter
  • First Online:
Advances in Lead-Free Piezoelectric Materials

Abstract

Bismuth ferrite materials including ceramics and thin films have attracted lots of attention due to their multi-functional properties. This chapter reviews the relationship between crystal structure and electrical properties of BFO-based ceramics through composition engineering. In addition, several crucial issues of BFO thin films are also pointed out, such as orientation, multilayer structure, buffer layer, thickness dependence, and so on. The detailed review of BFO-based materials gives a clear direction on the further researches about piezo/ferroelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu JG, Fan Z, Xiao DQ, Zhu JG, Wang J (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402

    Article  CAS  Google Scholar 

  2. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  CAS  Google Scholar 

  3. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  CAS  Google Scholar 

  4. Moreau JM, Michel MC, Gerson R, James WJ (1971) Ferroelectric BiFeO3 X-ray and neutron diffraction study. J Phys Chem Solids 32(6):1315–1320

    Article  CAS  Google Scholar 

  5. Megaw HD, Darlington CNW (1975) Geometrical and structural relations in the rhombohedral perovskites. Acta Crystallogr Sect A 31(2):161–173

    Article  Google Scholar 

  6. Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ (1969) The atomic structure of BiFeO3. Solit State Commun 7:701–704

    Article  CAS  Google Scholar 

  7. Yang CH, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14(46):15953

    Article  CAS  Google Scholar 

  8. Arnold DC, Knight KS, Morrison FD, Lightfoot P (2009) Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic phase. Phys Rev Lett 102:027602

    Article  CAS  Google Scholar 

  9. Arnold DC, Knight KS, Catalan G, Redfern SAT, Scott JF, Lightfoot P et al (2010) The β to γ transition in BiFeO3: a powder neutron diffraction study. Adv Funct Mater 20:2116–2123

    Article  CAS  Google Scholar 

  10. Zeches RJ, Rossell MD, Zhang JX, Hatt AJ, He Q, Yang CH et al (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326(5955):977–980

    Article  CAS  Google Scholar 

  11. Ricinschi D, Yun K, Okuyama M (2006) A mechanism for the 150 µC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J Phys: Condens Matter 18:L97–L105

    CAS  Google Scholar 

  12. Qi X, Dho J, Tomov R, Blamire MG, MacManus-Driscoll JL (2005) Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl Phys Lett 86:062903

    Article  CAS  Google Scholar 

  13. Yang JC, He Q, Suresha SJ, Kuo CY, Peng CY, Haislmaier RC et al (2012) Orthorhombic BiFeO3. Phys Rev Lett 109:247606

    Article  CAS  Google Scholar 

  14. Valant M, Axelsson AK, Alford N (2007) Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater 19:5431–5436

    Article  CAS  Google Scholar 

  15. Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE et al (2014) BiFeO3 ceramics: Processing, electrical, and electromechanical properties. J Am Ceram Soc 97(7):1993–2011

    Article  CAS  Google Scholar 

  16. Achenbach GD (1967) Preparation of single-phase polycrystalline BiFeO3. J Am Ceram Soc 50:437

    Article  CAS  Google Scholar 

  17. Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG (2004) Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett 84:1731–1733

    Article  CAS  Google Scholar 

  18. Yuan GL, Or SW, Wang YP, Liu ZG, Liu JM (2006) Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun 138:76–81

    Article  CAS  Google Scholar 

  19. Chen X, Wang J, Yuan G, Wu D, Liu J, Yin J et al (2012) Structure, ferroelectric and piezoelectric properties of multiferroic Bi0.875Sm0.125FeO3 ceramics. J Alloys Compd 541:173–176

    Article  CAS  Google Scholar 

  20. Sun C, Wang Y, Yang Y, Yuan G, Yin J, Liu Z (2012) Multiferroic properties of Bi1−xDyxFeO3 (x = 0–0.2) ceramics at various temperatures. Mater Lett 72:160–163

    Article  CAS  Google Scholar 

  21. Yuan GL, Or SW (2006) Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−xNdxFeO3 (x = 0–0.15). Appl Phys Lett 88:062905

    Article  CAS  Google Scholar 

  22. Yuan GL, Or SW, Chan HLW (2007) Structural transformation and ferroelectric–paraelectric phase transition in Bi1-xLaxFeO3 (x = 0–0.25) multiferroic ceramics. J Phys D Appl Phys 40:1196–2000

    Article  CAS  Google Scholar 

  23. Pradhan SK, Roul BK (2012) Electrical behavior of high resistivity Ce-doped BiFeO3 multiferroic. Phys B: Condensed Matter 407:2527–2532

    Article  CAS  Google Scholar 

  24. Jeon N, Rout D, Kim IW, Kang SJL (2011) Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping. Appl Phys Lett 98:072901

    Article  CAS  Google Scholar 

  25. Yan Z, Wang KF, Qu JF, Wang Y, Song ZT, Feng SL (2007) Processing and properties of Yb-doped BiFeO3 ceramics. Appl Phys Lett 91:082906

    Article  CAS  Google Scholar 

  26. Yao Y, Liu W, Chan Y, Leung C, Mak C (2011) Studies of rare-earth doped BiFeO3 ceramics. Int J Appl Ceram Technol 8(5):1246–1253

    Article  CAS  Google Scholar 

  27. Walker J, Budic B, Bryant P, Kurusingal V, Sorrell CC, Bencan A, Rojac T, Valanoor N (2015) Robust polarization and strain behavior of Sm-modifed BiFeO3 piezoelectric Ceramics. IEEE T Ultrason Ferr 62:83–87

    Google Scholar 

  28. Zheng T, Wu JG (2015) Enhanced piezoelectric activity in high-temperature Bi1−xySmxLayFeO3 lead-free ceramics. J Mater Chem C 3:3684–3693

    Google Scholar 

  29. Ding Y, Wang TH, Yang WC, Lin TC, Tu CS, Yao YD, Wu KT (2011) Magnetization, magnetoelectric effect, and structure transition in BiFeO3 and (Bi0.95La0.05)FeO3 multiferroic ceramics. IEEE Trans Magn 47:513–516

    Google Scholar 

  30. Yu BF, Li MY, Wang J, Pei L, Guo DY, Zhao XZ (2008) Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+. J Phys D Appl Phys 41:185401

    Article  CAS  Google Scholar 

  31. Chen XM, Wang JL, Yuan GL, Wu D, Liu JM, Yin J, Liu ZG (2012) Structure, ferroelectric and piezoelectric properties of multiferroic Bi0.875Sm0.125FeO3 ceramics. J Alloy Compd 541:173–176

    Article  CAS  Google Scholar 

  32. Haumont R, KreiselJ Bouvier P, Hippert F (2006) Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Phys Rev B 73:132101

    Article  CAS  Google Scholar 

  33. Wang SY, Qiu X, Gao J, Feng Y, Su WN, Zheng JX, Yu DS, Li D (2011) Electrical reliability and leakage mechanisms in highly resistive multiferroic La0.1Bi0.9FeO3 ceramics. Appl Phys Lett 98:152902

    Article  CAS  Google Scholar 

  34. Yuan GL, Baba-Kishi KZ, Liu JM, Orw SW (2006) Multiferroic properties of single-phase Bi0.85La0.15FeO3 lead-free ceramics. J Am Ceram Soc 89(10):3136–3139

    Google Scholar 

  35. Zheng T, Wu JG (2015) Effects of site engineering and doped element types on piezoelectric and dielectric properties in bismuth ferrite lead-free ceramics. J Mater Chem C 3:11326–11334

    Article  CAS  Google Scholar 

  36. Khomchenko VA, Pereira LCJ, Paixão JA (2014) Structural and magnetic phase transitions in Bi1−xNdxFe1−xMnxO3 multiferroics. J Appl Phys 115(3):034102

    Article  CAS  Google Scholar 

  37. Cui YF, Zhao YG, Luo LB, Yang JJ, Chang H, Zhu MH et al (2010) Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3. Appl Phys Lett 97(22):222904

    Article  CAS  Google Scholar 

  38. Xi XJ, Wang SY, Liu WF, Wang HJ, Guo F, Wang X et al (2014) Enhanced magnetic and conductive properties of Ba and Co co-doped BiFeO3 ceramics. J Magn Magn Mater 355:259–264

    Article  CAS  Google Scholar 

  39. Luo L, Luo W, Yuan G, Wei W, Yuan X, Zhang H et al (2013) The origin of enhanced room temperature ferromagnetism in Ba doped BiFeO3. J Super Cond Nov Magn 26:3309–3313

    Article  CAS  Google Scholar 

  40. Gu YH, Liu Y, Yao C, Ma YW, Wang Y, Chan HLW et al (2014) Ho and Ti co-doped BiFeO3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity. Chin Phys B 23(3):037501

    Article  CAS  Google Scholar 

  41. Troyanchuk IO, Karpinsky DV, Bushinskii MV, Prokhnenko O, Kopcevicz M, Szymczak R et al (2008) Crystal structure and properties of Bi1−xCaxFeO3 and Bi1−xCaxFeO1−xTixO3 solid solutions. J Exp Theor Phys 107(1):83–89

    Article  CAS  Google Scholar 

  42. Chaudhari YA, Singh A, Mahajan CM, Jagtap PP, Abuassaj EM, Chatterjee R et al (2013) Multiferroic properties in Zn and Ni co-doped BiFeO3 ceramics by solution combustion method (SCM). J Magn Magn Mater 347:153–160

    Article  CAS  Google Scholar 

  43. Xu J, Xie D, Yin C, Feng T, Zhang X, Zhao H et al (2014) Mg-doped Bi0.8Ca0.2FeO3 with enhanced ferromagnetic properties. Mater Lett 122:139–142

    Article  CAS  Google Scholar 

  44. Sati PC, Arora M, Chauhan S, Kumar M, Chhoker S (2014) Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceram Int 40(6):7805–7816

    Article  CAS  Google Scholar 

  45. Park JS, Yoo YJ, Hwang JS, Kang JH, Lee BW, Lee YP (2014) Enhanced ferromagnetic properties in Ho and Ni co-doped BiFeO3 ceramics. J Appl Phys 115(1):013904

    Article  CAS  Google Scholar 

  46. Xu J, Xie D, Yin C, Feng T, Zhang X, Li G (2013) Enhanced dielectric and multiferroic properties of single-phase Y and Zr co-doped BiFeO3 ceramics. J Appl Phys 114(15):154103

    Article  CAS  Google Scholar 

  47. Wang SY, Feng Y, Liu WF, Yu D, Li D (2013) Effects of Co doping on electronic structure and electric/magnetic properties of La0.1Bi0.9FeO3 ceramics. Sci China Phys Mech 56(10):1861–1865

    Google Scholar 

  48. Castañeda R, Rojas-George G, Silva J, Fuentes-Montero ME, Matutes-Aquino JA, Reyes-Rojas A et al (2013) Effects of Ni doping on ferroelectric and ferromagnetic properties of Bi0.75Ba0.25FeO3. Ceram Int 39(7):8527–8530

    Article  CAS  Google Scholar 

  49. Sati PC, Arora M, Chauhan S, Kumar M, Chhoker S (2013) Rietveld analysis, magnetic, vibrational and impedance properties of (Bi1−xPrx)(Fe1−xZrx)O3 ceramics. J Mater Sci 24(12):5023–5034

    CAS  Google Scholar 

  50. Lv J, Wu J (2015) Enhanced electrical properties of quenched (1 − x)Bi1−ySmyFeO3xBiScO3 lead-free ceramics. J Phys Chem C 119:21105–21115

    Article  CAS  Google Scholar 

  51. Rao TD, Asthana S, Niranjan MK (2015) Observation of coexistence of ferroelectric and antiferroelectric phases in Sc substituted BiFeO3. J Alloy Compd 642:192–199

    Article  CAS  Google Scholar 

  52. Xue F, Liang L, Gu Y, Takeuchi I, Kalinin SV, Chen LQ (2015) Composition-and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-Doped BiFeO3 system. Appl Phys Lett 106:012903

    Article  CAS  Google Scholar 

  53. Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595

    Article  CAS  Google Scholar 

  54. Lv J, Lou X, Wu J (2016) Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics. J Mater Chem C 4:6140–6151

    Article  CAS  Google Scholar 

  55. Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578

    Article  CAS  Google Scholar 

  56. Genenko YA, Glaum J, Hoffmann MJ, Albe K (2015) Mechanisms of aging and fatigue in ferroelectrics. Mater Sci Eng, B 192:52–82

    Article  CAS  Google Scholar 

  57. Gao P, Britson J, Jokisaari JR, Nelson CT, Baek SH, Wang Y, Eom CB, Chen LQ, Pan X (2013) Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Comm 4:2791

    Article  CAS  Google Scholar 

  58. Yao Z, Xu C, Liu H, Hao H, Cao M, Wang Z et al (2014) Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3–BaTiO3 high temperature piezoceramics. J Mater Sci 25(11):4975–4982

    CAS  Google Scholar 

  59. Leontsev SO, Eitel RE (2009) Dielectric and piezoelectric properties in Mn-modified (1 −  x)BiFeO3xBaTiO3 ceramics. J Am Ceram Soc 92(12):2957–2961

    Article  CAS  Google Scholar 

  60. Cen Z, Yang H, Zhou C, Zhou Q, Cheng J, Yuan C et al (2013) Effect of sintering temperature on microstructure and piezoelectric properties of Pb-free BiFeO3–BaTiO3 ceramics in the composition range of large BiFeO3 concentrations. J Electroceram 31:15–20

    Article  CAS  Google Scholar 

  61. Yang H, Zhou C, Liu X, Zhou Q, Chen G, Li W et al (2013) Piezoelectric properties and temperature stabilities of Mn-and Cu-modified BiFeO3–BaTiO3 high temperature ceramics. J Eur Ceram Soc 33(6):1177–1183

    Article  CAS  Google Scholar 

  62. Wei Y, Wang X, Jia J, Wang X (2012) Multiferroic and piezoelectric properties of 0.65BiFeO3–0.35BaTiO3 ceramic with pseudo-cubic symmetry. Ceram Int 38(4):3499–3502

    Article  CAS  Google Scholar 

  63. Li Y, Jiang N, Lam KH, Guo Y, Zheng Q, Li Q et al (2014) Structure, ferroelectric, piezoelectric, and ferromagnetic properties of BiFeO3–BaTiO3–Bi0.5Na0.5TiO3 lead-free multiferroic ceramics. J Am Ceram Soc 97(11):3602–3608

    Article  CAS  Google Scholar 

  64. Lin D, Zheng Q, Li Y, Wan Y, Li Q, Zhou W (2013) Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. J Eur Ceram Soc 33(15):3023–3036

    Article  CAS  Google Scholar 

  65. Luo L, Jiang N, Lei F, Guo Y, Zheng Q, Lin D (2014) Phase transition, ferroelectric and piezoelectric properties of Bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 lead-free ceramics. J Mater Sci 25(4):1736–1744

    CAS  Google Scholar 

  66. Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982

    Article  CAS  Google Scholar 

  67. Zhou C, Cen Z, Yang H, Zhou Q, Li W, Yuan C (2013) Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature. Phys B 410:13–16

    Google Scholar 

  68. Yabuta H, Shimada M, Watanabe T, Hayashi J, Kubota M, Miura K (2012) Microstructure of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 piezoelectric ceramics. Jpn J Appl Phys 51(9S1):09LD04

    Google Scholar 

  69. Guo Y, Xiao P, Luo L, Jiang N, Lei F, Zheng Q (2014) Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics. J Mater Sci 25(9):3753–3761

    CAS  Google Scholar 

  70. Zhou C, Yang H, Zhou Q, Cen Z, Li W, Yuan C (2013) Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3–BaTiO3 ceramics. Ceram Int 39(4):4307–4311

    Article  CAS  Google Scholar 

  71. Zheng Q, Luo L, Lam KH, Jiang N, Guo Y, Lin D (2014) Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3–BaTiO3 lead-free ceramics. J Appl Phys 116(18):184101

    Article  CAS  Google Scholar 

  72. Zheng T, Jiang ZG, Wu JG (2016) Enhanced Piezoelectricity in (1 − x)Bi1.05Fe1−yAyO3-xBaTiO3 Lead-free Ceramics: Site Engineering and Wide Phase Boundary Region. Dalton Trans 45:11277–11285

    Article  CAS  Google Scholar 

  73. Woodward DI, Reaney IM, Eitel RE, Randall CA (2003) Crystal and domain structure of the BiFeO3–PbTiO3 solid solution. J Appl Phys 94:3313–3318

    Article  CAS  Google Scholar 

  74. Amorin H, Correas C, Fernandez-Posada CM, Peña O, Castro A, Algueró M (2014) Multiferroism and enhancement of material properties across the morphotropic phase boundary of BiFeO3–PbTiO3. J Appl Phys 115(10):104104

    Article  CAS  Google Scholar 

  75. Amorín H, Correas C, Ramos P, Hungría T, Castro A, Algueró M (2012) Very high remnant polarization and phase-change electromechanical response of BiFeO3–PbTiO3 at the multiferroic morphotropic phase boundary. Appl Phys Lett 101(17):172908

    Article  CAS  Google Scholar 

  76. Zhuang J, Wu H, Ren W, Ye ZG (2014) Local polar structure and multiferroic properties of (1 − x)Bi0.9Dy0.1FeO3xPbTiO3 solid solution. J Appl Phys 116(6):066809

    Article  CAS  Google Scholar 

  77. Hu W, Tan X, Rajan K (2011) BiFeO3–PbZrO3–PbTiO3 ternary system for high Curie temperature piezoceramics. J Eur Ceram Soc 31(5):801–807

    Article  CAS  Google Scholar 

  78. Fan L, Chen J, Li S, Kang H, Liu L, Fang L (2013) Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3–PbTiO3. Appl Phys Lett 102(2):022905

    Article  CAS  Google Scholar 

  79. Bennett J, Bell AJ, Stevenson TJ, Comyn TP (2013) Exceptionally large piezoelectric strains in BiFeO3–(K0.5Bi0.5)TiO3–PbTiO3 ceramics. Scripta Mater 68(7):491–494

    Article  CAS  Google Scholar 

  80. Ning H, Lin Y, Hou X, Zhang L (2014) High thermally stable BiFeO3–PbTiO3–BaTiO3 ceramics with improved ferroelectric properties. J Mater Sci 25(3):1162–1166

    CAS  Google Scholar 

  81. Dai R, Chen J, Cheng J (2014) Investigation of (1 − x)(Bi0.94La0.06)(Ga0.05Fe0.95)O3xPbTiO3 ceramics for high temperature applications. Ceram Int 40(8):13299–13303

    Article  CAS  Google Scholar 

  82. Fedulov SA, Ladyzhinskii PB, Pyatigorskaya IL, Venevtsev YN (1964) Complete phase diagram of the PbTiO3–BiFeO3 system. Sov Phys Solid State 6(2):375–378

    Google Scholar 

  83. Zhu WM, Guo HY, Ye ZG (2008) Structural and magnetic characterization of multiferroic (BiFeO3)1−x(PbTiO3)x solid solutions. Phys Rev B 78(1):014401

    Article  CAS  Google Scholar 

  84. Bhattacharjee S, Tripathi S, Pandey D (2007) Morphotropic phase boundary in (1 − x)BiFeO3xPbTiO3: phase coexistence region and unusually large tetragonality. Appl Phys Lett 91(4):042903

    Article  CAS  Google Scholar 

  85. Wang Y, Ce-Wen N (2008) Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J Appl Phys 103(11):114104

    Article  CAS  Google Scholar 

  86. Tao H, Lv J, Zhang R (2017) Lead-free rare earth-modified BiFeO3 ceramics: phase structure and electrical properties. Mater Design 2120:83–89

    Article  CAS  Google Scholar 

  87. Raghavan CM, Jin WK, Sang SK (2014) Effects of Ho and Ti doping on structural and electrical properties of BiFeO3 thin films. J Am Ceram Soc 97(1):235–240

    Article  CAS  Google Scholar 

  88. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 71:014113

    Article  CAS  Google Scholar 

  89. Béa H, Bibes M, Zhu XH, Fusil S, Bouzehouane K, Petit S (2008) Crystallographic, magnetic, and ferroelectric structures of bulklike BiFeO3 thin films. Appl Phys Lett 93(7):072901

    Article  CAS  Google Scholar 

  90. Li JF, Wang JL, Wuttig M, Ramesh R, Wang N, Ruette B (2004) Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl Phys Lett 84(25):5261–5263

    Article  CAS  Google Scholar 

  91. Wu J, Wang J (2009) Orientation dependence of ferroelectric behavior of BiFeO3 thin films. J Appl Phys 106:104111

    Article  CAS  Google Scholar 

  92. Wu JG, Wang J (2010) BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(100) substrates. Acta Mater 58:1688–1697

    Article  CAS  Google Scholar 

  93. Yun KY, Noda M, Okuyama M, Saeki H, Tabata H, Saito K (2004) Structural and multiferroic properties of BiFeO3 thin films at room temperature. J Appl Phys 96(6):3399–3403

    Article  CAS  Google Scholar 

  94. Yun KY, Noda M, Okuyama M (2003) Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl Phys Lett 83(19):3981–3983

    Article  CAS  Google Scholar 

  95. Yang SY, Zavaliche F, Mohaddes-Ardabili L, Vaithyanathan V, Schlom DG, Lee YJ (2005) Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl Phys Lett 87(10):102903

    Article  CAS  Google Scholar 

  96. Simões AZ, Gonzalez AHM, Cavalcante LS, Riccardi CS, Longo E, Varela JA (2007) Ferroelectric characteristics of BiFeO3 thin films prepared via a simple chemical solution deposition. J Appl Phys 101(7):074108

    Article  CAS  Google Scholar 

  97. Wang Y, Lin Y, Nan C (2008) Thickness dependent size effect of BiFeO3 films grown on LaNiO3-buffered Si substrates. J Appl Phys 104(12):123912

    Article  CAS  Google Scholar 

  98. Singh SK, Kim YK, Funakubo H, Ishiwara H (2006) Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl Phys Lett 88:162904

    Article  CAS  Google Scholar 

  99. Yan L, Cao H, Li JF, Viehland D (2009) Triclinic phase in tilted (001) oriented BiFeO3BiFeO3 epitaxial thin films. Appl Phys Lett 94:132901

    Article  CAS  Google Scholar 

  100. Bornand V, Trolier-McKinstry S, Takemura K, Randall CA (2000) Orientation dependence of fatigue behavior in relaxor ferroelectric–PbTiO3 thin films. J Appl Phys 87:3965–3972

    Article  CAS  Google Scholar 

  101. Wang Y, Zheng RY, Sim CH, Wang J (2009) Charged defects and their effects on electrical behavior in Bi1−xLaxFeO3 thin films. J Appl Phys 105:016106

    Article  CAS  Google Scholar 

  102. Yuan GL, Or SW, Chan HLW, Liu ZG (2007) Reduced ferroelectric coercivity in multiferroic Bi0.825Nd0.175FeO3 thin film. J Appl Phys 101(2):4106

    Google Scholar 

  103. Hu GD, Cheng X, Wu WB, Yang CH (2007) Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition. Appl Phys Lett 91(23):232909

    Article  CAS  Google Scholar 

  104. Hu ZQ, Li MY, Liu J, Pei L, Wang J, Yu BF (2010) Structure transition and multiferroic properties of Eu-Doped BiFeO3 thin films. J Am Ceram Soc 93(9):2743–2747

    Article  CAS  Google Scholar 

  105. Chen X, Hu G, Wu W, Yang C, Wang X (2010) Large piezoelectric coefficient in Tb-doped BiFeO3 films. J Am Ceram Soc 93(4):948–950

    Article  CAS  Google Scholar 

  106. Nagarajan V, Fennie CJ, Wuttig M, Salamanca-Riba L, Takeuchi I (2008) Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl Phys Lett 92(20):202904

    Article  CAS  Google Scholar 

  107. Yan Y, Gomi M, Yokota T, Song H (2013) Phase transition and huge ferroelectric polarization observed in BiFe1−xGaxO3 thin films. Appl Phys Lett 102(22):222906

    Article  CAS  Google Scholar 

  108. Fan Z, Xiao J, Liu H, Yang P, Ke Q, Ji W (2015) Stable ferroelectric perovskite structure with giant axial ratio and polarization in epitaxial BiFe0.6Ga0.4O3 thin films. ACS Appl Mater Interfaces 7:2648–2653

    Article  CAS  Google Scholar 

  109. Singh SK, Menou N, Funakubo H, Maruyama K, Ishiwara H (2007) (111)-textured Mn-substituted BiFeO3 thin films on SrRuO3/Pt/Ti/SiO2/Si structures. Appl Phys Lett 90:242914

    Article  CAS  Google Scholar 

  110. Yan F, Lai M, Lu L (2010) Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films. Phys Chem C 114:6994–6998

    Article  CAS  Google Scholar 

  111. Kim JK, Kim SS, Kim WJ, Bhalla AS, Guo R (2006) Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl Phys Lett 88(13):2901–2903

    Google Scholar 

  112. Park JM, Nakashima S, Gotoda F, Kanashima T, Okuyama M (2009) Pulsed laser deposition and characterization of Sr and Zn Co-substituted BiFeO3 thin films. Jpn J Appl Phys 48(9):09KB03

    Google Scholar 

  113. Kawae T, Terauchi Y, Tsuda H, Kumeda M, Morimoto A (2009) Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO3 thin films. Appl Phys Lett 94:112904

    Article  CAS  Google Scholar 

  114. Hu GD, Fan SH, Yang CH, Wu WB (2008) Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl Phys Lett 92(19):2905–2907

    Google Scholar 

  115. Wu J, Qiao S, Wang J, Xiao D, Zhu J (2013) A giant polarization value of Zn and Mn co-modified bismuth ferrite thin films. Appl Phys Lett 102:052904

    Article  CAS  Google Scholar 

  116. Singh SK, Maruyama K, Ishiwara H (2007) Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl Phys Lett 91:112913

    Article  CAS  Google Scholar 

  117. Wu J, Wang J (2009) Effects of SrRuO3 buffer layer thickness on multiferroic (Bi0.90La0.10)(Fe0.95Mn0.05)O3 thin films. J Appl Phys 106:054115

    Article  CAS  Google Scholar 

  118. Hu Z, Li M, Yu B, Pei L, Liu J, Wang J (2009) Enhanced multiferroic properties of BiFeO3 thin films by Nd and high-valence Mo co-doping. J Phys D Appl Phys 42(18):185010

    Article  CAS  Google Scholar 

  119. Kim JK, Kim SS, Kim WJ, Bhalla AS (2007) Substitution effects on the ferroelectric properties of BiFeO3 thin films prepared by chemical solution deposition. J Appl Phys 101(1):014108

    Article  CAS  Google Scholar 

  120. Kawae T, Tsuda H, Morimoto A (2008) Reduced leakage current and ferroelectric properties in Nd and Mn codoped BiFeO3 thin films. Appl Phys Express 1(5):051601

    Article  CAS  Google Scholar 

  121. Lee SU, Kim SS, Park MH, Kim JW, Jo HK, Kim WJ (2007) Effects of co-substitution on the electrical properties of BiFeO3 thin films prepared by chemical solution deposition. Appl Surf Sci 254(5):1493–1497

    Article  CAS  Google Scholar 

  122. Wu JG, Wang J (2010) Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. J Am Ceram Soc 9(9):2795–2803

    Article  CAS  Google Scholar 

  123. Yang KG, Zhang YL, Yang SH, Wang B (2010) Structural, electrical, and magnetic properties of multiferroic Bi1−xLaxFe1−yCoyO3 thin films. J Appl Phys 107(12):124109

    Article  CAS  Google Scholar 

  124. Zeng J, Tang ZH, Tang MH, Xu DL, Xiao YG, Zeng BW (2014) Enhanced ferroelectric, dielectric and leakage properties in Ce and Ti co-doping BiFeO3 thin films. J Sol-Gel Sci Technol 72(3):587–592

    Article  CAS  Google Scholar 

  125. Murari NM, Thomas R, Melgarejo RE, Pavunny SP, Katiyar RS (2009) Structural, electrical, and magnetic properties of chemical solution deposited BiFe1−xTixO3 and BiFe0.9Ti0.05Co0.05O3 thin films. J Appl Phys 106:014103

    Article  CAS  Google Scholar 

  126. Wu JG, Wang J (2010) Multiferroic behavior of Sn-modified BiFeO3 thin films. Electrochem Solid-State Lett 13(9):G83–G85

    Article  CAS  Google Scholar 

  127. Wang Y, Nan CW (2007) Structural and ferroic properties of Zr-doped BiFeO3 thin films. Ferroelectrics 357:172–178

    Article  CAS  Google Scholar 

  128. Uchida H, Ueno R, Funakubo H, Koda S (2006) Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J Appl Phys 100:014106

    Article  CAS  Google Scholar 

  129. Wu JG, Kang GQ, Liu HJ, Wang J (2009) Ferromagnetic, ferroelectric, and fatigue behavior of (111)-oriented BiFeO3/(Bi1/2Na1/2)TiO3 lead-free bilayered thin films. Appl Phys Lett 94:172906

    Article  CAS  Google Scholar 

  130. Lee YH, Wu JM, Lai CH (2006) Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl Phys Lett 88:042903

    Article  CAS  Google Scholar 

  131. Singh SK, Maruyama K, Ishiwara H (2007) The influence of La-substitution on the micro-structure and ferroelectric properties of chemical-solution-deposited BiFeO3 thin films. J Phys D 40:2705–2709

    Article  CAS  Google Scholar 

  132. Hu GD, Fan SH, Yang CH, Wu WB (2008) Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl Phys Lett 92:192905

    Article  CAS  Google Scholar 

  133. Wu JG, Wang J (2010) ZnO as a buffer layer for growth of BiFeO3 thin films. J Appl Phys 108(3):034102

    Article  CAS  Google Scholar 

  134. Cheng ZX, Wang XL, Dou SX, Kimura H, Ozawa K (2008) Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping. Phys Rev B 77:092101

    Article  CAS  Google Scholar 

  135. Dawber M, Scott JF (2000) Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl Phys Lett 76:1060–1062

    Article  CAS  Google Scholar 

  136. Sakamoto W, Yamazaki H, Iwata A, Shimura T, Yogo T (2006) Synthesis and characterization of BiFeO3–PbTiO3 thin films through metalorganic precursor solution. Jpn J Appl Phys 45(9S):7315–7320

    Article  CAS  Google Scholar 

  137. Chen L, Ren W, Zhu W, Ye Z, Shi P, Chen X (2010) Improved dielectric and ferroelectric properties in Ti-doped BiFeO3–PbTiO3 thin films prepared by pulsed laser deposition. Thin Solid Films 518(6):1637–1640

    Article  CAS  Google Scholar 

  138. Yan F, Miao S, Sterianou I, Reaney IM, Lai MO, Lu L (2011) Multiferroic properties and temperature-dependent leakage mechanism of Sc-substituted bismuth ferrite–lead titanate thin films. Scripta Mater 64(5):458–461

    Article  CAS  Google Scholar 

  139. Wang Y, Li J, Chen J, Deng Y (2013) Ba and Ti co-doped BiFeO3 thin films via a modified chemical route with synchronous improvement in ferroelectric and magnetic behaviors. J Appl Phys 113(10):103904

    Article  CAS  Google Scholar 

  140. Ito Y, Sakamoton W, Moriya M, Yogo T (2013) Synthesis and properties of multiferroic 0.7BiFeO3–0.3BaTiO3thin films by Mn doping. Ceram Int 39(7):451–455

    Article  CAS  Google Scholar 

  141. Wu JG, Wang J (2009) Multiferroic behaviour and orientation dependence of lead-free (1 − x)BiFeO3x(Bi0.50Na0.50)TiO3 thin films. J Phys D Appl Phys 42(42):195405

    Article  CAS  Google Scholar 

  142. Wu JG, Wang J (2010) Multiferroic behavior of BiFeO3–RTiO3 (Mg, Sr, Ca, Ba, and Pb) thin films. J Appl Phys 108:026101

    Article  CAS  Google Scholar 

  143. Smolenski GA, Isupv VA, Aganovskaya AI (1961) New ferroelectrics of complex composition IV. J Sov Phys Sol Stat 2:2651

    Google Scholar 

  144. Wu JG, Wang J (2009) Multiferroic behaviour and orientation dependence of lead-free (1-x)BiFeO3-x(Bi0.50Na0.5)TiO3 thin films. J Phys D: Appl Phys 42(19):195405

    Google Scholar 

  145. Jo S, Lee S, Lee Y (2012) Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method. Nano Res Lett 7(1):1–5

    Article  Google Scholar 

  146. Jo S, Nam S, Lee S (2011) Fabrication and electrical properties of PZT/BFO multilayer thin films. Trans Electric Electron Mater 12(5):193–196

    Article  Google Scholar 

  147. Wu J, Kang G, Wang J (2009) Electrical behavior and oxygen vacancies in BiFeO3/[(Bi1/2Na1/2)0.94Ba0.06]TiO3 thin film. Appl Phys Lett 95:192901

    Article  CAS  Google Scholar 

  148. Reddy VA, Dabra N, Hundal JS, Pathak NP, Nath R (2014) Structure and multiferroic characteristics of nanocomposite Ba0.5Sr0.5TiO3-Bi0.9La0.1Fe0.9Mn0.1O3 thin film heterostructures. Sci. Adv Mater 6(5):1043–1051

    Google Scholar 

  149. Chen L, Ren W, Ye Z, Tian A, Wu X, Shi P (2012) Electric and magnetic properties of bilayered lead-free piezoelectric and multiferroic Bi0.9Dy0.1FeO3/K0.5Na0.5NbO3 thin films. J Am Ceram Soc 95(10):3166–3171

    Article  CAS  Google Scholar 

  150. Wu JG, Wang J, Xiao DQ, Zhu JG (2011) BiFeO3/Zn1−xMnxO bilayered thin films. Appl Surf Sci 258(4):1390–1394

    Article  CAS  Google Scholar 

  151. Wu JG, Wang J (2009) Multiferroic behavior and impedance spectroscopy of bilayered BiFeO3/CoFe2O4 thin films. J Appl Phys 105:124107

    Article  CAS  Google Scholar 

  152. Liu WL, Tan GQ, Dong GH, Xue X, Ren HJ, Xia A (2014) Structure, leakage mechanism and multiferroic properties of (Mn,Cr) co-doped BiFe0.93Mn0.04Cr0.03O3/NiFe2O4 bilayer film by sol-gel. Superlattice Microst 72(4):186–193

    Google Scholar 

  153. Wu JG, Lou XJ, Wang Y, Wang J (2010) Resistive hysteresis and diodelike behavior of BiFeO3/ZnO heterostructure. Electrochem Solid-State Lett 13(2):G9–G12

    Article  CAS  Google Scholar 

  154. Dong GH, Tan GQ, Luo YY, Liu WL, Ren HJ, Xia A (2014) The superior multiferroic properties of Bi0.85Nd0.15Fe0.98Mn0.02O3/CoFe2O4 heterostructure thin film at room temperature. Mater Lett 127:24–27

    Article  CAS  Google Scholar 

  155. Nechache R, Gupta P, Harnagea C, Pignolet A (2007) Enhanced magnetism in epitaxial BiFeO3∕BiCrO3 multiferroic heterostructures. Appl Phys Lett 91(22):222908

    Article  CAS  Google Scholar 

  156. De Araujo CAP, Taylor GW (1991) Integrated ferroelectrics. Ferroelectrics 116(1):215–228

    Article  Google Scholar 

  157. Mathews S, Ramesh R, Venkatesan T, Benedetto J (1997) Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276(5310):238–240

    Article  CAS  Google Scholar 

  158. Zhang ST, Zhang Y, Luo ZL, Lu MH, Gu ZB, Chen YF (2009) Multiferroic properties of Bi0.8La0.2FeO3/CoFe2O4 multilayer thin films. Appl Surf Sci 255(9):5092–5095

    Article  CAS  Google Scholar 

  159. Hauke T, Mueller V, Beige H (1998) Domain-wall interaction in improper ferroelectric lock-in phases. Phys Rev B 57:10424

    Article  CAS  Google Scholar 

  160. Wu JG, Zhang BY, Wang XP, Wang J, Zhu JG, Xiao DQ (2013) Charge defects-induced electrical properties in bismuth ferrite bilayered thin films. Mater Res Bull 48(8):2973–2977

    Article  CAS  Google Scholar 

  161. Wu JG, Wang J (2010) Improved ferroelectric and fatigue behavior of Bi0.95Gd0.05FeO3/BiFe0.95Mn0.05O3 bilayered thin films. J Phys Chem C 114(45):19318–19321

    Google Scholar 

  162. Wu JG, Qiao S, Pu CH, Xiao DQ, Wang J, Zhu JG (2012) Effect of bilayer structure and a SrRuO3 buffer layer on ferroelectric properties of BiFeO3 thin films. Appl Phys A 109(1):57–61

    Article  CAS  Google Scholar 

  163. Wu JG, Wang J, Xiao D, Zhu JG (2012) Multiferroic and fatigue behavior of BiFe0.95Mn0.05O3/Bi0.90La0.10Fe0.85Zn0.15O3 bilayered thin films. IEEE Trans Ultrason Ferr 59(1):14–20

    Google Scholar 

  164. Wu JG, Wang J, Xiao DQ, Zhu JG (2011) Combined effects of bilayer structure and ion substitutions on bismuth ferrite thin films. J Appl Phys 109:074101

    Article  CAS  Google Scholar 

  165. Wu JG, Wang J, Xiao DQ, Zhu JG (2011) Effect of (Bi,Gd)FeO3 layer thickness on the microstructure and electrical properties of BiFeO3 thin films. J Am Ceram Soc 94(12):4291–4298

    Google Scholar 

  166. Wu JG, Wang J (2010) Bilayered BiFe0.95Mn0.05O3/Bi0.90La0.10FeO3 thin films with low ferroelectric coercivity and large remanent polarization. J Am Ceram Soc 93(8):2113–2116

    Article  CAS  Google Scholar 

  167. Zhao HY, Kimura H, Cheng ZX, Wang XL, Nishida T (2009) Room temperature multiferroic properties of Nd:BiFeO3/Bi2FeMnO6 bilayered films. Appl Phys Lett 95:232904

    Article  CAS  Google Scholar 

  168. Jang HW, Baek SH, Ortiz D, Folkman CM, Eom CB, Chu YH, Shafer P, Ramesh R, Vaithyanathan V, Schlom DG (2008) Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage. Appl Phys Lett 92:062910

    Article  CAS  Google Scholar 

  169. Uchida H, Ueno R, Nakaki H, Funakubo H, Koda S (2005) Ion modification for improvement of insulating and ferroelectric properties of BiFeO3 thin films fabricated by chemical solution deposition. Jpn J Appl Phys Part 2(44):L561

    Article  CAS  Google Scholar 

  170. Wu JG, Wang J, Xiao DQ, Zhu JG (2011) Mn4+:BiFeO3/Zn2+:BiFeO3 bilayered thin films of (111) orientation. Appl Sur Sci 257(16):7226–7230

    Article  CAS  Google Scholar 

  171. Wu J, Wang J (2010) Improved ferroelectric behavior in (110) oriented BiFeO3 thin films. J Appl Phys 107:034103

    Article  CAS  Google Scholar 

  172. Ke Q, Lu W, Huang X, Wang J (2012) Highly (111)-orientated BiFeO3 thin film deposited on La0.67Sr0.33MnO3 buffered Pt/TiO2/SiO2/Si (100) substrate. J Electrochem Soc 159(2):G11–G14

    Article  Google Scholar 

  173. Tang XW, Hu L, Yang J, Chen L, Dai JM, Song WH (2014) BiFeO3 thin films prepared on metallic Ni tapes by chemical solution deposition: effects of annealing temperature and a La0.5Sr0.5TiO3 buffer layer on the dielectric, ferroelectric and leakage properties. RSC Adv 4:32738–32743

    Article  CAS  Google Scholar 

  174. Gao GY, Yang BY, Huang W, Zeng HZ, Wang Y, Chan HLW (2013) Heteroepitaxial growth and multiferroic properties of Mn-doped BiFeO3 films on SrTiO3 buffered III–V semiconductor GaAs. J Appl Phys 114(9):094106

    Article  CAS  Google Scholar 

  175. Lee CC, Wu JM (2007) Thickness-dependent retention behaviors and ferroelectric properties of BiFeO3 thin films on BaPbO3 electrodes. Appl Phys Lett 91(10):102906

    Article  CAS  Google Scholar 

  176. Li D, Sun X, Chuai X, Wu Z, Cao Z, Yan Y (2012) Enhanced ferro- and piezoelectric properties of a sol–gel derived BiFe0.95Mn0.05O3 thin film on Bi2O3-buffered Pt/Ti/SiO2/Si substrate. J Cryst Growth 338(1):85–90

    Article  CAS  Google Scholar 

  177. Habouti S, Shiva RK, Solterbeck CH, Es-Souni M, Zaporojtchenko V (2007) La0.8Sr0.2MnO3 buffer layer effects on microstructure, leakage current, polarization, and magnetic properties of BiFeO3 thin films. J Appl Phys 102(4):044113

    Article  CAS  Google Scholar 

  178. Sun W, Zhou Z, Li JF (2016) Sol–gel-processed (001)-textured BiFeO3 thin films on Pt(111)/Ti/SiO2/Si substrates with PbO seeding nanocrystals. RSC Adv 6:489–494

    Article  CAS  Google Scholar 

  179. Zheng RY, Gao XS, Zhou ZH, Wang J (2007) Multiferroic BiFeO3 thin films deposited on SrRuO3 buffer layer by rf sputtering. J Appl Phys 101(101):054104

    Article  CAS  Google Scholar 

  180. Scott JF, Dawber M (2000) Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl Phys Lett 76:3801–3803

    Article  CAS  Google Scholar 

  181. Eerenstein W, Morrison FD, Dho J, Blamire MG, Scott JF, Mathur ND (2005) Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307:1203

    Google Scholar 

  182. Lee YH, Wu JM, Chueh YL, Chou LJ (2005) Low-temperature growth and interface characterization of thin films with reduced leakage current. Appl Phys Lett 87:172901

    Article  CAS  Google Scholar 

  183. Lee YH, Liang CS, Wu JM (2005) Crystal growth and characterizations of highly oriented BiFeO3 thin films. Electrochem Solid-State Lett 8:F55–F57

    Article  CAS  Google Scholar 

  184. Li YW, Sun JL, Chen J, Meng XJ, Chu JH (2005) Preparation and characterization of BiFeO3 thin films grown on LaNiO3-coated SrTiO3 substrate by chemical solution deposition. J Cryst Growth 285:595–599

    Google Scholar 

  185. Zhu J, Luo WB, Li YR (2008) Growth and properties of BiFeO3 thin films deposited on LaNiO3-buffered SrTiO3(001) and (111) substrates by PLD. Appl Surf Sci 255:3466–3469

    Article  CAS  Google Scholar 

  186. Rana DS, Takahashi K, Mavani KR, Kawayama I, Murakami H, Tonouchi M, Yanagida T, Tanaka H, Kawai T (2007) Thickness dependence of the structure and magnetization of BiFeO3 thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) substrate. Phys Rev B 75:060405(R)

    Article  CAS  Google Scholar 

  187. Zhu XH, Béa H, Bibes M, Fusil S, Bouzehouane K, Janque E, Barthélémy A, Lebeugle D, Viret M, Colson D (2008) Thickness-dependent structural and electrical properties of multiferroic Mn-doped BiFeO3 thin films grown epitaxially by pulsed laser deposition. Appl Phys Lett 93:082902

    Article  CAS  Google Scholar 

  188. Wu JG, Wang J, Xiao DQ, Zhu JG (2011) Ferroelectric behavior in bismuth ferrite thin films of different thickness. ACS Appl Mater Interfaces 3(9):3261–3263

    Article  CAS  Google Scholar 

  189. Wu JG, Wang J, Xiao DQ, Zhu JG (2011) Thickness-dependent magnetic properties of bismuth ferrite thin films. Electrochem Solid-State Lett 14(12):G57–G59

    Article  CAS  Google Scholar 

  190. Béa H, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Rode K, Bencok P, Barthélémy A (2006) Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced X-ray characterizations. Phys Rev B 74:020101(R)

    Article  CAS  Google Scholar 

  191. Smolenski GA, Chupis IE (1982) Ferroelectromagnets. Sov Phys-Usp 25:475

    Article  Google Scholar 

  192. Park TG, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772

    Article  CAS  Google Scholar 

  193. Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27:1140

    Article  CAS  Google Scholar 

  194. Bea H, Bibes M, Barthélémy A, Bouzehouane K, Jacquet E, Khodan A, Contour JP, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D, Viret M (2005) Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl Phys Lett 87:072508

    Article  CAS  Google Scholar 

  195. Shelke V, Harshan VN, Kotru S, Gupta A (2009) Effect of kinetic growth parameters on leakage current and ferroelectric behavior of BiFeO3 thin films. J Appl Phys 106:104114

    Article  CAS  Google Scholar 

  196. You L, Chua NT, Yao K, Chen L, Wang J (2009) Influence of oxygen pressure on the ferroelectric properties of BiFeO3 epitaxial thin films by pulsed laser deposition. Phys Rev B 80:024105

    Article  CAS  Google Scholar 

  197. Wu J, Wang J, Xiao DQ, Zhu JG (2011) Effect of oxygen content during sputtering on the electrical properties of bismuth ferrite thin films. Phys Status Solidi RRL 5:190–192

    Article  CAS  Google Scholar 

  198. Mathe VL, Patankar KK, Patil RN, Lokhande CD (2004) Synthesis and dielectric properties of Bi1−xNdxFeO3 perovskites. J Magn Magn Mater 270:380–388

    Article  CAS  Google Scholar 

  199. Wu JG, Wang J, Xiao DQ, Zhu JG (2012) A method to improve electrical properties of BiFeO3 thin films. ACS Appl Mater Interfaces 4(3):1182–1185

    Article  CAS  Google Scholar 

  200. Almond DP, Bowen CR (2004) Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. Phys Rev Lett 92:157601

    Article  CAS  Google Scholar 

  201. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833

    Article  CAS  Google Scholar 

  202. Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632

    Article  CAS  Google Scholar 

  203. Oligschlaeger R, Waser R, Meyer R (2006) Resistive switching and data reliability of epitaxial (Ba, Sr)TiO3 thin films. Appl Phys Lett 88:042901

    Google Scholar 

  204. Ramesh R, Spaldin N (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21

    Article  CAS  Google Scholar 

  205. Choi T, Lee S, Choi YJ (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63

    Article  CAS  Google Scholar 

  206. Wu JG, Wang J (2010) Diodelike and resistive hysteresis behavior of heterolayered BiFeO3/ZnO ferroelectric thin films. J Appl Phys 108:094107

    Article  CAS  Google Scholar 

  207. Yan F, Xing GZ, Li L (2014) Low temperature dependent ferroelectric resistive switching in epitaxial BiFeO3 films. Appl Phys Lett 104:132904

    Article  CAS  Google Scholar 

  208. Lu ZX, Fan Z, Li PL, Fan H, Tian G, Song X, Li ZW, Zhao LN, Huang KR, Zhang FY, Zhang Z, Zeng M, Gao XS, Feng FJ, Wan JG, Liu JM (2016) Ferroelectric resistive switching in high-density nanocapacitor arrays based on BiFeO3 ultrathin films and ordered Pt nanoelectrodes. ACS Appl Mater Interfaces 8(36):23963–23968

    Article  CAS  Google Scholar 

  209. Hong S, Choi T, Jeon JH, Kim Y, Lee H, Joo HY, Hwang I, Kim JS, Kang SO, Kalinin SV, Park BH (2013) Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes. Adv Mater 25(16):2339–2343

    Article  CAS  Google Scholar 

  210. Wu JG, Wang J, Xiao DQ, Zhu JG (2011) Resistive hysteresis in BiFeO3 thin films. Mater Res Bull 46(11):2183–2186

    Article  CAS  Google Scholar 

  211. Iakovlev S, Solterbeck CH, Kuhnke M (2005) Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization. J Appl Phys 97:094901

    Article  CAS  Google Scholar 

  212. Wu JG, Wang XP, Zhang BY, Zhu JG, Xiao DQ (2013) Orientation dependence of resistive hysteresis in bismuth ferrite thin films. J Alloy Compd 569:126–129

    Article  CAS  Google Scholar 

  213. Voora VM, Hofmann T, Brandt IM, Lorenz M, Grundmann M, Ashkenov N, Schubert M (2009) Resistive hysteresis and interface charge coupling in BaTiO3–ZnO heterostructures. Appl Phys Lett 94:142904

    Article  CAS  Google Scholar 

  214. Kato K, Kaneko Y, Tanaka H, Shimada Y (2008) Nonvolatile memory using epitaxially grown composite-oxide-film technology. Jpn J Appl Phys 47:2719

    Article  CAS  Google Scholar 

  215. Watanabe Y (1999) Electrical transport through Pb(Zr, Ti)O3 pn and pp heterostructures modulated by bound charges at a ferroelectric surface: Ferroelectric pn diode. Phys Rev B 59:11257

    Google Scholar 

  216. Voora VM, Hofmann T, Brandt M, Lorenz M, Ashkenov N, Grundmann M, Schubert M (2009) Electrical properties of ZnO–BaTiO3–ZnO heterostructures with asymmetric interface charge distribution. Appl Phys Lett 95:082902

    Article  CAS  Google Scholar 

  217. Clark SJ, Robertson J (2007) Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl Phys Lett 90:132903

    Article  CAS  Google Scholar 

  218. Chen P, Ma X, Yang D (2007) Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J Appl Phys 101:053103

    Article  CAS  Google Scholar 

  219. Neamen DA (2003) Semiconductor Physics and devices: basic principles, 3rd edn. McGraw-Hill, New York, vol 9, pp 350–359

    Google Scholar 

  220. Yang H, Jain M, Suvorova NA, Zhou H, Luo HM, Feldmann DM, Dowden PC, DePaula RF, Foltyn SR, Jia QX (2007) Temperature-dependent leakage mechanisms of Pt/BiFeO3/SrRuO3 thin film capacitors. Appl Phys Lett 91:072911

    Article  CAS  Google Scholar 

  221. Li Y, Hu Z, Yue F, Yang P, Qian Y, Cheng W, Ma X, Chu J (2008) Oxygen-vacancy-related dielectric relaxation in BiFeO3 films grown by pulsed laser deposition. J Phys D 41:215403

    Article  CAS  Google Scholar 

  222. Schmidt R, Eerenstein W, Winiecki T, Morrison FD, Midgley PA (2007) Impedance spectroscopy of epitaxial multiferroic thin films. Phys Rev B 75:245111

    Article  CAS  Google Scholar 

  223. Srivastava A, Garg A, Morrison FD (2009) Impedance spectroscopy studies on polycrystalline BiFeO3 thin films on Pt/Si substrates. J Appl Phys 105:054103

    Article  CAS  Google Scholar 

  224. Pattanayak S, Parida BN, Das PR, Choudhary RNP (2013) Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl Phys A 112(2):387–395

    Article  CAS  Google Scholar 

  225. Mahato DK, Saha S, Sinha TP (2016) Structural studies and impedance spectroscopy of sol-gel derived Bi0.9Pr0.1FeO3 nanoceramics. J Phys Chem Solids 92:45–52

    Article  CAS  Google Scholar 

  226. Ke QQ, Lou XJ, Wang Y, Wang J (2010) Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Phys Rev B 82:024102

    Article  CAS  Google Scholar 

  227. Pradhan SK, Das SN, Halder S, Bhuyan S, Choudhary RNP (2017) Dielectric dispersion and impedance spectroscopy of yttrium doped BiFeO3–PbTiO3 electronic system. J Mater Sci: Mater Electron 28(13):9627–9633

    CAS  Google Scholar 

  228. Kumar M, Shankar S, Kumar S, Thakur OP, Ghosh AK (2017) Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions. Phys Lett A 381(4):379–386

    Article  CAS  Google Scholar 

  229. Dimos D, Al-Shareef HN, Warren WL, Tuttle BA (1996) Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films. J Appl Phys 80:1682

    Google Scholar 

  230. Ang C, Yu Z, Cross LE (2000) Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys Rev B 62:228

    Article  Google Scholar 

  231. Royen P, Swars K (1957) Das System Wismutoxyd-Eisenoxyd im Bereich von 0 bis 55 Mol% Eisenoxyd. Angew Chem 69(24):779

    Article  CAS  Google Scholar 

  232. Zhang JX, Xiang B, He Q (2011) Large field-induced strains in a lead-free piezoelectric material. Nature Nanotech 6(2):98–102

    Article  CAS  Google Scholar 

  233. Zavaliche F (2006) Multiferroic BiFeO3 films: domain structure and polarizationdynamics. Phase Trans 79:991–1017

    Article  CAS  Google Scholar 

  234. Du X (1998) Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl Phys Lett 72:2421–2423

    Article  CAS  Google Scholar 

  235. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  CAS  Google Scholar 

  236. Ahart M (2008) Origin of morphotropic phase boundaries in ferroelectrics. Nature 451:545–548

    Article  CAS  Google Scholar 

  237. Chmielus M (2009) Giant magnetic-field-induced strains in polycrystalline Ni–Mn–Ga. Nat Mater 8:863–866

    Article  CAS  Google Scholar 

  238. Simes AZ, Aguiar EC, Gonzalez AHM (2008) Strain behavior of lanthanum modified BiFeO3 thin films prepared via soft chemical method. J Appl Phys 104(10):104115

    Article  CAS  Google Scholar 

  239. Rojac T, Kosec M, Budic B (2010) Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 108(7):074107

    Article  CAS  Google Scholar 

  240. Rojac T, Kosec M, Damjanovic D (2011) Large electric-field induced strain in BiFeO3 ceramics. J Am Ceram Soc 94(12):4108–4111

    Google Scholar 

  241. Hoffmann MJ, Hammer M, Endriss A, Lupascu DC (2001) Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Mater 49:1301–1310

    Google Scholar 

  242. Kumar P, Singh S, Thakur OP, Prakash C, Goel TC (2004) Study of lead magnesium niobate-lead titanate ceramics for Piezo-actuator applications. Jpn J Appl Phys 43:1501–1506

    Article  CAS  Google Scholar 

  243. Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelasticmonodomain crystal of the perovskite BiFeO3. Acta Cryst 46:698–702

    Article  Google Scholar 

  244. Baek H, Jang HW, Folkman CM, Li YL, Winchester B, Zhang JX, He Q, Chu YH, Nelson CT, Rzchowski MS, Pan XQ, Ramesh R, Chen LQ, Eom CB (2010) Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater 9(4):309–314

    Article  CAS  Google Scholar 

  245. Yuan GL, Or SW, Liu JM, Liu ZG (2006) Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl Phys Lett 89:052905

    Article  CAS  Google Scholar 

  246. Gong YF, Ping W, Liu WF, Wang SY, Liu GY, Rao GH (2012) Switchable ferroelectric diode effect and piezoelectric properties of Bi0.9La0.1FeO3 ceramics. Chin Phys Lett 29(4):047701

    Google Scholar 

  247. Walker J, Bryant P, Kurusingal V (2015) Synthesis-phase–composition relationship and high electric-field-induced electromechanical behavior of samarium-modified BiFeO3 ceramics. Acta Mater 83:149–159

    Article  CAS  Google Scholar 

  248. Kumar M, Yadav KL (2007) Magnetic field induced phase transition in multiferroic BiFe1−xTixO3 ceramics prepared by rapid liquid phase sintering. Appl PhysLett 91:112911

    Google Scholar 

  249. Jun YK, Moon WT, Chang CM, Kim HS, Ryu HS, Kim JW (2005) Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun 135(1):133–137

    Article  CAS  Google Scholar 

  250. Yoo YJ, Hwang JS, Lee YP, Park JS, Kang JH, Kim J (2013) High ferromagnetic transition temperature in multiferroic BiFe0.95Ni0.05O3 compound. J Appl Phys 114(16):163902

    Article  CAS  Google Scholar 

  251. Kumar M, Yadav KL (2007) Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization. Appl Phys Lett 91:242901

    Article  CAS  Google Scholar 

  252. Leontsev SO, Eitel RE (2011) Origin and magnitude of the large piezoelectric response in the lead-free (1 − x)BiFeO3xBaTiO3 solid solution. J Mater Res 26(1):9–17

    Article  CAS  Google Scholar 

  253. Li Q, Wei J, Cheng J (2017) High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 lead-free ceramics. J Mater Sci 52(1):229–237

    Article  CAS  Google Scholar 

  254. Wang D, Khesro A, Murakami S (2017) Temperature dependent, large electromechanical strain in Nd-doped BiFeO3–BaTiO3 lead-free ceramics. J Eur Ceram Soc 37(4):1857–1860

    Article  CAS  Google Scholar 

  255. Zheng D, Zuo R (2015) A novel BiFeO3–BaTiO3–BaZrO3 lead-free relaxor ferroelectric ceramic with low-hysteresis and frequency-insensitive large strains. J Am Ceram Soc 98(12):3670–3672

    Article  CAS  Google Scholar 

  256. Chen J, Cheng J (2016) High electric-induced strain and temperature-dependent piezoelectric properties of 0.75BF-0.25BZT lead-free ceramics. J Am Ceram Soc 99(2):536–542

    Article  CAS  Google Scholar 

  257. Fujii I, Mitsui R, Nakashima K (2011) Structural, dielectric, and piezoelectric properties of Mn-doped BaTiO3-Bi(Mg1/2Ti1/2)O3–BiFeO3 ceramics. Jpn J Appl Phys 50(9S2):09ND07

    Google Scholar 

  258. Mitsui R, Fujii I, Nakashima K (2013) Enhancement in the piezoelectric properties of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 system ceramics by nanodomain. Ceram Int 39:S695–S699

    Article  CAS  Google Scholar 

  259. Fujii I, Mitsui R, Nakashima K (2014) Enhanced piezoelectric properties of (Ba0.3Bi0.7)(Mg0.05Fe0.6Ti0.35)O3 piezoelectric ceramics with high Curie temperature. J Adv Dielect 4(01):1450005

    Google Scholar 

  260. Kumar MM, Srinivas A, Suryanarayana SV (2000) Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys 87:855–862

    Article  CAS  Google Scholar 

  261. Ozaki T, Kitagawa S, Nishihara S, Hosokoshi Y, Suzuki M, Noguchi Y, Miyayama M, Mori S (2009) Ferroelectric properties and nano-scaled domain structures in (1 − x)BiFeO3xBaTiO3 (0.33 < x <0.50). Ferroelectric 385:6155–6161

    Article  CAS  Google Scholar 

  262. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267

    Article  CAS  Google Scholar 

  263. Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68:2916–2921

    Article  CAS  Google Scholar 

  264. Bai F, Bian YL, Hao JH, Shen B, Zhai JW (2013) The composition and temperature-dependent structure evolution and large strain response in (1 − x)(Bi0.5Na0.5)TiO3xBa(Al0.5Ta0.5)O3 ceramics. J Am Ceram Soc 96(1):246–252

    Google Scholar 

  265. Li Q, Dong Y, Cheng J (2015) Structure, dielectric and piezoelectric properties of (0.9 − x)(Bi0.95La0.05)FeO3xPbTiO3–0.1BaZrO3 ceramics. Piezoelectricity, acoustic waves, and device applications (SPAWDA) symposium on IEEE. pp 434–437

    Google Scholar 

  266. Dong Y, Chen J, Cheng J (2016) Enhanced dielectric and piezoelectric properties of Mn modified 0.65(Bi0.95La0.05)FeO3-0.35Pb(Ti1−xMnx)O3 ceramics. J Mater Sci: Mater Electron 27(7):6823–6828

    Google Scholar 

  267. Zhang S, Lebrun L, Rhee S, Eitel RE, Randall CA, Shrout TR (2002) Crystal growth and characterization of new high Curie temperature (1 − x)BiScO3xPbTiO3 single crystals. J Cryst Growth 236(1–3):210–216

    Article  CAS  Google Scholar 

  268. Leist T, Granzow T, Jo W, Rodel J (2010) Effect of tetragonal distortion on ferroelectric domain switching: a case study on La-doped BiFeO3–PbTiO3 ceramics. J Appl Phys 108:014103

    Article  CAS  Google Scholar 

  269. Li ZA, Yang HX, Tian HF, Li JQ, Cheng J, Chen J (2007) Transmission electron microscopy study of multiferroic (Bi1-xLax)FeO3–PbTiO3 with x  = 0.1, 0.2, and 0.3. Appl Phys Lett 90:182904

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2018). Bismuth Ferrite-Based Piezoelectric Materials. In: Advances in Lead-Free Piezoelectric Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-8998-5_6

Download citation

Publish with us

Policies and ethics