Skip to main content

Genome Microbiology for Synthetic Applications

  • Chapter
  • First Online:
Synthetic Biology

Abstract

Synthetic biology integrates the knowledge of engineering, mathematics and physics into the biological systems to investigate and get deeper insight into the natural cellular phenomena and thus is implicated for a variety of applications. A key step in synthetic biology is logical combination of simple circuits into higher-order systems which work like a genetic switchboard which is subsequently implicated in building novel biological entities on an ever more complex level for novel application. In recent years, the field has emerged extensively and constructed many complex circuits which find its use in several fields ranging from simple laboratory experiments to clinic. Most important application of synthetic biology is the development of novel and efficient therapies for the treatment of a large number of life-threatening infectious diseases, development of vaccine, cell therapy, regenerative medicine and microbiome engineering. This chapter is aimed at providing a brief description on different applications of synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arkin A (2008) Setting the standard in synthetic biology. Nat Biotechnol 26:771–774

    Article  CAS  Google Scholar 

  • Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:533–543

    Article  CAS  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489

    Article  CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  Google Scholar 

  • Chan IS, Ginsburg GS (2011) Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet 12:217–244

    Article  CAS  Google Scholar 

  • Cheng AA, Lu TK (2012) Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng 14:155–178

    Article  CAS  Google Scholar 

  • Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R (2014) Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 15:289–294

    Article  CAS  Google Scholar 

  • D’souza S (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Article  Google Scholar 

  • Elani Y, Law RV, Ces O (2014) Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun 5:5305

    Article  CAS  Google Scholar 

  • Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794

    Article  CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  Google Scholar 

  • Gibson DG et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  CAS  Google Scholar 

  • Gonzalez-Angulo AM, Hennessy BT, Mills GB (2010) Future of personalized medicine in oncology: a systems biology approach. J Clin Oncol 28:2777–2783

    Article  CAS  Google Scholar 

  • Haag R (2004) Supramolecular drug-delivery systems based on polymeric core–shell architectures. Angew Chem Int Ed 43:278–282

    Article  CAS  Google Scholar 

  • Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  Google Scholar 

  • Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 135:4906–4909

    Article  CAS  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    Article  CAS  Google Scholar 

  • Levskaya A et al (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–442

    Article  CAS  Google Scholar 

  • Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 104:11197–11202

    Article  CAS  Google Scholar 

  • Lu TK, Bowers J, Koeris MS (2013) Advancing bacteriophage-based microbial diagnostics with synthetic biology. Trends Biotechnol 31:325–327

    Article  CAS  Google Scholar 

  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979

    Article  CAS  Google Scholar 

  • Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. ACS Publications

    Google Scholar 

  • McDaniel R, Weiss R (2005) Advances in synthetic biology: on the path from prototypes to applications. Curr Opin Biotechnol 16:476–483

    Article  CAS  Google Scholar 

  • Ro D-K et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  • Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252

    Article  CAS  Google Scholar 

  • Russell SJ, Peng K-W, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30:658–670

    Article  CAS  Google Scholar 

  • Ulmer JB, Mason PW, Geall A, Mandl CW (2012) RNA-based vaccines. Vaccine 30:4414–4418

    Article  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  Google Scholar 

  • Viertel TM, Ritter K, Horz H-P (2014) Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 69:2326–2336

    Article  CAS  Google Scholar 

  • Way JC, Collins JJ, Keasling JD, Silver PA (2014) Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157:151–161

    Article  CAS  Google Scholar 

  • Weber W, Fussenegger M (2009) The impact of synthetic biology on drug discovery. Drug Discov Today 14:956–963

    Article  CAS  Google Scholar 

  • Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35

    Article  CAS  Google Scholar 

  • Wong TS, Schwaneberg U (2003) Protein engineering in bioelectrocatalysis. Curr Opin Biotechnol 14:590–596

    Article  CAS  Google Scholar 

  • Ye H, Daoud-El Baba M, Peng R-W, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568

    Article  CAS  Google Scholar 

  • Ye H, Charpin-El Hamri G, Zwicky K, Christen M, Folcher M, Fussenegger M (2013) Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proc Natl Acad Sci 110:141–146

    Article  CAS  Google Scholar 

  • Ying H et al (1999) Cancer therapy using a self-replicating RNA vaccine. Nat Med 5:823–827

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the Indian Council of Medical Research, Council for Scientific Industrial Research, University Grants Commission, and Department of Science and Technology (India) for financial support.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Imtaiyaz Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammad, T., Hassan, M.I. (2018). Genome Microbiology for Synthetic Applications. In: Singh, S. (eds) Synthetic Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8693-9_5

Download citation

Publish with us

Policies and ethics