Skip to main content

Multi Minimum Product Spanning Tree Based Indexing Approach for Content Based Retrieval of Bio Images

  • Conference paper
  • First Online:
Smart and Innovative Trends in Next Generation Computing Technologies (NGCT 2017)

Abstract

Similarity computation between bio images is very different from the similarity computation between routine images as the information about bio images are not completely in the form of textual nature. Like in case of bio-images (viz. protein structures) similarity can be computed on the basis of their sequence similarity and their structural similarity. In the previous work AMIPRO, has been proposed which takes both structural and sequential similarity into the consideration. Intelligent Vision Algorithm has been applied on the protein images and the sequence information present in the PDB file has been used to determine the sequential similarity. The proposed model minimizes the time taken in the online similarity determination by storing the pre calculated ranked results. In present manuscript a storage efficient index structure Multi Minimum Product Spanning Tree has been proposed and applied on AMIPRO. Our results shows that MMPST based implementation of index structure can easily map similar records on the basis of their level of similarity computed on multiple features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yasmin, M., Mohsin, S., Sharif, M.: Intelligent image retrieval techniques: a survey. J. Appl. Res. Technol. 14, 87–103 (2014)

    Article  Google Scholar 

  2. Wiwie, C., Baumbach, J., Röttger, R.: Comparing the performance of biomedical clustering methods. NCBI, Nat. Methods 12(11), 1033–1038 (2015). https://doi.org/10.1038/nmeth.3583

    Article  Google Scholar 

  3. Min, V.P., Halderman, J.A., Kazhdan, M., Funkhouser, T.A.: Early experiences with a 3D model search engine. In: Web3D Symposium, pp. 7–18, March 2003

    Google Scholar 

  4. Srivastava, M., Singh, D.S., Abbas, D.S.: Web archiving: past present and future of evolving multimedia legacy. Int. Adv. Res. J. Sci. Eng. Technol. 3(3), 44–46 (2015)

    Google Scholar 

  5. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  6. Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Open Struct. Biol. 6(3), 377–385 (1996)

    Article  Google Scholar 

  7. Srivastava, M., Singh, S.K., Abbas, S.Q.: A novel model for fast and robust retrieval of 3D bio-images using intelligent vision algorithm. Int. J. Control Theory Appl. 9, 617–627 (2016)

    Google Scholar 

  8. Srivastava, M., Singh, S.K., Abbas, S.Q., Neelabh: AMIPRO: a content-based search engine for fast and efficient retrieval of 3D protein structures. In: Somani, A., Srivastava, S., Mundra, A., Rawat, S. (eds.) Proceedings of First International Conference on Smart System, Innovations and Computing. SIST, vol 79, pp. 739–748. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5828-8_70

  9. http://ekhidna2.biocenter.helsinki.fi/dali/

  10. http://source.rcsb.org/ceHome.jsp

  11. Orengo, C.A., Taylor, W.R.: SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol. https://doi.org/10.1016/S0076-6879(96)66038-8

  12. https://ub.cbm.uam.es/software/mammoth.php

  13. Otsu, N., Kurita, T.: A new scheme for practical flexible and intelligent vision systems. In: lAPR Workshop on CV - Special Hardware and Industrial Applications, Tokyo, 12–14 October 1988

    Google Scholar 

  14. Shibuya, T., Kashima, H., Sese, J., Ahmed, S.: Pattern Recognition in Bioinformatics. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34123-6

    Book  Google Scholar 

  15. Suzuki, M.T.: Texture image classification using extended 2D HLAC features. In: International Conference On Kansai Engineering And Emotion Research Texture, KEER 2014 (2014)

    Google Scholar 

  16. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  17. Herráez, A.: Biomolecules in the computer: Jmol to the rescue. Biochem. Mol. Biol. Educ. 34(4), 255–261 (2006)

    Article  Google Scholar 

  18. MATLAB and Statistics Toolbox Release 2015a. The Math Works, Inc., Natick, Massachusetts, United States

    Google Scholar 

  19. Sorensen, K., Janssens, G.K.: An algorithm to generate all spanning trees of a graph in order of increasing cost. University of Antwerp; Hasselt University, Belgium (2005)

    Google Scholar 

  20. Sakr, S., Al-Naymat, G.: Graph indexing and querying: a review. Int. J. Web Inf. Syst. https://doi.org/10.1108/17440081011053104. Source: DBLP

  21. Huan, J., Wang, W., Prins, J.: Comparing graph representations of protein structure for mining family-specific residue-based packing motifs. J. Comput. Biol. (JCB) 12(6), 657–671 (2005)

    Article  Google Scholar 

  22. Lončar, V., Škrbić, S., Balaž, A.: Parallelization of minimum spanning tree algorithms using distributed memory architectures. In: Yang, G.-C., Ao, S.-I., Gelman, L. (eds.) Transactions on Engineering Technologies, pp. 543–554. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-8832-8_39

    Chapter  Google Scholar 

  23. Horowitz, E., Sahani, S., Rajasekaran, S.: Fundamentals of Computer Algorithms, 2nd edn. Universities Press (India) Pvt. Ltd., Hyderabad (2008)

    Google Scholar 

  24. Xu, Y., Olman, V., Xu, D.: Minimum spanning trees for gene expression data clustering. Genome Inf. 12, 24–33 (2001)

    Google Scholar 

  25. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Prentice Hall of India Pvt. Ltd., New Delhi (2005)

    MATH  Google Scholar 

  26. Hasuikea, T., Katagirib, H.: Interactive decision making for uncertain minimum spanning tree problems with total importance based on a risk-management approach. Appl. Math. Model. 37(6), 4548–4560 (2013)

    Article  MathSciNet  Google Scholar 

  27. Afrati, F.N., Fotakis, D., Ullman, J.D.: Enumerating subgraph instances using Map-Reduce. In: Proceedings of IEEE ICDE, pp. 62–73 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, M., Singh, S.K., Abbas, S.Q. (2018). Multi Minimum Product Spanning Tree Based Indexing Approach for Content Based Retrieval of Bio Images. In: Bhattacharyya, P., Sastry, H., Marriboyina, V., Sharma, R. (eds) Smart and Innovative Trends in Next Generation Computing Technologies. NGCT 2017. Communications in Computer and Information Science, vol 828. Springer, Singapore. https://doi.org/10.1007/978-981-10-8660-1_73

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8660-1_73

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8659-5

  • Online ISBN: 978-981-10-8660-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics