Skip to main content

Agents and Multi-agent Coordination

  • Chapter
  • First Online:
Principles in Noisy Optimization

Part of the book series: Cognitive Intelligence and Robotics ((CIR))

Abstract

An intelligent agent is an entity that performs its task in a given environment by exploiting the knowledge acquired from its interaction with the environment during problem-solving process. Over the past two decades, multi-agent systems have emerged as a new methodology to address the issue of organizing a large-scale system by assembling and coordinating individual agents to achieve a goal jointly. Remarkable features of multi-agent systems resulting in their immense real-world applications include low implementation cost, adaptability with dynamicity of environment, enhanced flexibility, great robustness, and ease of maintenance. A multi-agent system is primarily characterized by goal-oriented coordination among its agents, both in cooperative and in competitive circumstances. This chapter introduces the basic concepts of cooperative and competitive multi-agent coordination. It begins with formal definitions of agency and elaborately discusses the perceptual and learning capability of an agent based on its architecture. Gradually, the chapter unveils the emergence of multi-agent coordination due to handshaking of distributed artificial intelligence and machine intelligence. The chapter then highlights the significance of planning and learning in multi-agent coordination to solve real-world problems. The chapter next demonstrates the scope of evolutionary optimization algorithms to maximize coordination efficiency in multi-agent robotics by optimal utilization of system resources. The chapter ends with a discussion on enhancing the performance of traditional evolutionary optimization algorithms to handle measurement noise in real-world multi-robot coordination problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Kasabov, R. Kozma, Introduction: hybrid intelligent adaptive systems. Int. J. Intell. Syst. 13(6), 453–454 (1998)

    Article  Google Scholar 

  2. D. Romero, P. Bernus, O. Noran, J. Stahre, Å. Fast-Berglund, in The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems. IFIP International Conference on Advances in Production Management Systems (Springer, Cham, 2016), pp. 677–686

    Google Scholar 

  3. G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence (MIT press, 1999)

    Google Scholar 

  4. C. Peters, G. Castellano, M. Rehm, E. André, A. Raouzaiou, K. Rapantzikos, K. Karpouzis, G. Volpe, A. Camurri, A. Vasalou, Fundamentals of agent perception and attention modelling, in Emotion-Oriented Systems (Springer, Berlin, Heidelberg, 2011), pp. 293–319

    Google Scholar 

  5. M.A. Arbib, Brains, Machines, and Mathematics (Springer Science & Business Media, 2012)

    Google Scholar 

  6. S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall, Englewood Cliffs, NJ, 1995)

    MATH  Google Scholar 

  7. M.R. Genesereth, N.J. Nilsson, Logical Foundations of Artificial Intelligence (Morgan Kaufmann, 1987)

    Google Scholar 

  8. K. Konolige, A Deduction Model of Belief (Morgan Kaufmann, 1986)

    Google Scholar 

  9. R. Brooks, A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  10. J. Ferber, Reactive distributed artificial intelligence: principles and applications, in Foundations of Distributed Artificial Intelligence (1996), pp. 287–314

    Google Scholar 

  11. M.W. Matlin, Cognition (Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  12. M.E. Bratman, D.J. Israel, M.E. Pollack, Plans and resource-bounded practical reasoning. Comput. Intell. 4(3), 349–355 (1988)

    Article  Google Scholar 

  13. M. Bratman, Intention, Plans, and Practical Reason (Harvard University Press, 1987)

    Google Scholar 

  14. N.J. Nilsson, Artificial Intelligence: A New Synthesis (Elsevier, 1998)

    Google Scholar 

  15. T. Dean, J. Allen, Y. Aloimonos, Artificial Intelligence: Theory and Practice (Benjamin-Cummings Publishing Co. Inc., 1995)

    Google Scholar 

  16. J. Pearl, Heuristic search theory: survey of recent results. IJCAI 1, 554–562 (1981)

    Google Scholar 

  17. S.M. LaValle, Planning Algorithms (Cambridge University Press, 2006)

    Google Scholar 

  18. A. Konar, Artificial Intelligence and Soft Computing: Behavioral and Cognitive Modeling of The Human Brain (CRC Press, 1999)

    Google Scholar 

  19. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  20. A. Stentz, Optimal and efficient path planning for partially-known environments, in Proceedings of IEEE International Conference on Robotics and Automation, 1994, pp. 3310–3317

    Google Scholar 

  21. O. Takahashi, R.J. Schilling, Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans. Robot. Autom. 5(2), 143–150 (1989)

    Article  Google Scholar 

  22. S. Kambhampati, L. Davis, Multiresolution path planning for mobile robots. IEEE J. Robot. Autom. 2(3), 135–145 (1986)

    Article  Google Scholar 

  23. P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, A.K. Nagar, Multi-robot path-planning using artificial bee colony optimization algorithm, in IEEE World Congress on Nature and Biologically Inspired Computing, 2011, pp. 219–224

    Google Scholar 

  24. P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L.C. Jain, A.K. Nagar, Realization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path planning. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 814–831 (2013)

    Article  Google Scholar 

  25. M. Arbib, The Handbook of Brain Theory and Neural Networks (MIT Press, 2003)

    Google Scholar 

  26. B. Kosko, Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)

    Article  Google Scholar 

  27. R. Axelrod, Structure of Decision: The Cognitive Maps of Political Elites (Princeton University Press, 2015)

    Google Scholar 

  28. D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Psychology Press, 2005)

    Google Scholar 

  29. A. Konar, S. Pal, Modeling cognition with fuzzy neural nets. Fuzzy Theory Syst. 1341–1391 (1999)

    Google Scholar 

  30. D.H. Schunk, Learning Theories (Printice Hall Inc., New Jersey, 1996)

    Google Scholar 

  31. E. Guigon, B. Dorizzi, Y. Burnod, W. Schultz, Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cereb. Cortex 5(2), 135–147 (1995)

    Article  Google Scholar 

  32. M. Wooldridge, An Introduction to Multiagent Systems (Wiley, 2009)

    Google Scholar 

  33. J. Ferber, Multi-agent Systems: An Introduction to Distributed Artificial Intelligence (Addison-Wesley, 1999)

    Google Scholar 

  34. J. Liu, J. Wu, Multiagent Robotic Systems (CRC Press, 2001)

    Google Scholar 

  35. S. Kraus, Negotiation and cooperation in multi-agent environments. Artif. Intell. 94(1–2), 79–97 (1997)

    Article  Google Scholar 

  36. R. D’Andrea, G.E. Dullerud, Distributed control design for spatially interconnected systems. IEEE Trans. Autom. Control 48(9), 1478–1495 (2003)

    Article  MathSciNet  Google Scholar 

  37. E.H. Durfee, V.R. Lesser, D.D. Corkill, Coherent cooperation among communicating problem solvers. IEEE Trans. Comput. 100(11), 1275–1291 (1987)

    Article  Google Scholar 

  38. M.P. Wellman, A market-oriented programming environment and its application to distributed multicommodity flow problems. JAIR 1, 1–23 (1993)

    Article  Google Scholar 

  39. R.G. Smith, The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 12, 1104–1113 (1980)

    Article  Google Scholar 

  40. M. Georgeff, Communication and interaction in multi-agent planning. Read. Distrib. Artif. Intell. 313, 125–129 (1988)

    Google Scholar 

  41. T. Ishida, L. Gasser, M. Yokoo, Organization self-design of distributed production systems. IEEE Trans. Knowl. Data Eng. 4(2), 123–134 (1992)

    Article  Google Scholar 

  42. W. Ren, R.W. Beard, E.M. Atkins, A survey of consensus problems in multi-agent coordination, in Proceedings of IEEE American Control Conference, 2005, pp. 1859–1864

    Google Scholar 

  43. Y. Cao, W. Yu, W. Ren, G. Chen, An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Industr. Inf. 9(1), 427–438 (2013)

    Article  Google Scholar 

  44. T. Sandholm, Q. Huai, Nomad: mobile agent system for an internet-based auction house. IEEE Internet Comput. 4(2), 80–86 (2000)

    Article  Google Scholar 

  45. R.C. Arkin, Cooperation and Communication in Multi-agent Reactive Robotic Systems (Georgia Institute of Technology, 1994)

    Google Scholar 

  46. M. De Weerdt, B. Clement, Introduction to planning in multiagent systems. Multiagent Grid Syst. 5(4), 345–355 (2009)

    Article  Google Scholar 

  47. M.P. Wellman, W.E. Walsh, P.R. Wurman, J.K. MacKie-Mason, Auction protocols for decentralized scheduling. Games Econ. Behav. 35(1), 271–303 (2001)

    Article  MathSciNet  Google Scholar 

  48. W.E. Walsh, M.P. Wellman, A market protocol for decentralized task allocation, in Proceedings of IEEE International Conference on Multi Agent Systems, 1998, pp. 325–332

    Google Scholar 

  49. E.D. Sacerdoti, The Nonlinear Nature of Plans, No. SRI-TN-101 (Stanford Research Inst Menlo Park CA, 1975)

    Google Scholar 

  50. K. Erol, J. Hendler, D.S. Nau, HTN planning: complexity and expressivity, in AAAI, vol. 94, 1994, pp. 1123–1128

    Google Scholar 

  51. M.J. Katz, J.S. Rosenschein, Plans for multiple agents. Distrib. Artif. Intell. 2, 197–228 (1989)

    Article  Google Scholar 

  52. E.P.D. Pednault, Formulating multiagent, dynamic-world problems in the classical planning framework, in Reasoning about Actions & Plans (1987), pp. 47–82

    Google Scholar 

  53. E.H. Durfee, C.L. Ortiz Jr., M.J. Wolverton, A survey of research in distributed, continual planning. AI Mag. 20(4), 13 (1999)

    Google Scholar 

  54. Y. Qi, Approaches to Multi-agent Planning

    Google Scholar 

  55. I. Tsamardinos, M.E. Pollack, J.F. Horty, Merging plans with quantitative temporal constraints, temporally extended actions, and conditional branches, in AIPS, 2000, pp. 264–272

    Google Scholar 

  56. E.H. Durfee, V.R. Lesser, Planning coordinated actions in dynamic domains, in Proceedings of the DARPA Knowledge Based Planning Workshop, 1987, pp. 18.1–18.10

    Google Scholar 

  57. B.J. Grosz, S. Kraus, “The Evolution of Shared Plans”, in Foundations of Rational Agency (Springer, Netherlands, 1999), pp. 227–262

    Book  Google Scholar 

  58. D.A. Braun, P.A. Ortega, D.M. Wolpert, Nash equilibria in multi-agent motor interactions. PLoS Comput. Biol. 5(8), e1000468 (2009)

    Article  MathSciNet  Google Scholar 

  59. S. Sen, M. Sekaran, J. Hale, Learning to coordinate without sharing information, in AAAI, 1994, pp. 426–431

    Google Scholar 

  60. S. Sen, S. Airiau, Emergence of norms through social learning. IJCAI 1507, 1512 (2007)

    Google Scholar 

  61. L. Panait, S. Luke, Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-agent Syst. 11(3), 387–434 (2005)

    Article  Google Scholar 

  62. R.J. Aumann, Game Theory (Palgrave Macmillan, London, 1989), pp. 1–53

    Google Scholar 

  63. E. Maskin, Nash equilibrium and welfare optimality. Rev. Econ. Stud. 66(1), 23–38 (1999)

    Article  MathSciNet  Google Scholar 

  64. J. Hu, M.P. Wellman, Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 4, 1039–1069 (2003)

    MathSciNet  MATH  Google Scholar 

  65. A. Yamashita, M. Fukuchi, J. Ota, T. Arai, H. Asama, Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3D environment, in Proceedings of IEEE International Conference on Robotics and Automation, 2000, pp. 3144–3151

    Google Scholar 

  66. S. Premvuti, S. Yuta, Consideration on the cooperation of multiple autonomous mobile robots, in Proceedings of IEEE International Workshop on Intelligent Robots and Systems, 1990, pp. 59–63

    Google Scholar 

  67. L.E. Parker, C. Touzet, Multi-robot learning in a cooperative observation task, in Distributed Autonomous Robotic Systems (Springer, 2000), pp. 391–401

    Google Scholar 

  68. S. Mahadevan, J. Connell, Automatic programming of behavior-based robots using reinforcement learning. Artif. Intell. 55(2–3), 311–365 (1992)

    Article  Google Scholar 

  69. M.J. Mataric, Interaction and Intelligent Behavior, No. AI-TR-1495 (Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1994)

    Google Scholar 

  70. S. Marsella, J. Adibi, Y. Al-Onaizan, G.A. Kaminka, I. Muslea, M. Tambe, On being a teammate: experiences acquired in the design of RoboCup teams, in Proceedings of Autonomous Agents, 1999, pp. 221–227

    Google Scholar 

  71. W. Burgard, M. Moors, D. Fox, R. Simmons, S. Thrun, Collaborative multi-robot exploration, in Proceedings of IEEE International Conference on Robotics and Automation, 2000, pp. 476–481

    Google Scholar 

  72. D. Fox, W. Burgard, H. Kruppa, S. Thrun, Collaborative multi-robot localization, in Mustererkennung (Springer, Berlin, Heidelberg, 1999), pp. 15–26

    Google Scholar 

  73. K. Inoue, J. Ota, T. Hirano, D. Kurabayashi, T. Arai, Iterative transportation by cooperative mobile robots in unknown environment, in Distributed Autonomous Robotic Systems, vol. 3 (Springer, Berlin, Heidelberg, 1998), pp. 3–12

    Chapter  Google Scholar 

  74. S. Nolfi, Evolutionary robotics: exploiting the full power of self-organization. Connect. Sci. 10, 167–184 (1998)

    Article  Google Scholar 

  75. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, 1999)

    Google Scholar 

  76. T. Balch, Learning roles: behavioral diversity in robot teams, in College of Computing Technical Report GIT-CC-97–12 (Georgia Institute of Technology, Atlanta, Georgia 73, 1997)

    Google Scholar 

  77. T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford university press, 1996)

    Google Scholar 

  78. J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes (2011)

    Google Scholar 

  79. J. Chakraborty, A. Konar, A distributed multi-robot path-planning using particle swarm optimization, in 2nd National Conference on Recent Trends in Information Systems, 2008, pp. 216–221

    Google Scholar 

  80. J. Chakraborty, A. Konar, U.K. Chakraborty, L.C. Jain, Distributed co-operative multi robot path-planning using differential evolution, in IEEE Congress on Evolutionary Computation, 2009, pp. 718–725

    Google Scholar 

  81. S.X. Yang, Y. Hu, M. Q.H. Meng, A knowledge based GA for path planning of multiple mobile robots in dynamic environments, in IEEE Conference on Robotics, Automation and Mechatronics, 2006, pp. 1–6

    Google Scholar 

  82. R.R. Sahoo, P. Rakshit, MdT Haider, S. Swarnalipi, B.K. Balabantaray, S. Mohapatra, Navigational path-planning of multi-robot using honey bee mating optimization algorithm (HBMO). Int. J. Comput. Appl. 27(11), 1–8 (2011)

    Google Scholar 

  83. A.K. Sadhu, P. Rakshit, A. Konar, A modified imperialist competitive algorithm for multi-robot stick-carrying application. Robot. Auton. Syst. 76, 15–35 (2016)

    Article  Google Scholar 

  84. P. Rakshit, A.K. Sadhu, P. Bhattacharjee, A. Konar, R. Janarthanan, Multi-robot box-pushing using non-dominated sorting bee colony optimization algorithm, in Proceedings of Swarm, Evolutionary and Memetic Computing Conference, vol. 7076, Dec 2011, pp. 601–609

    Google Scholar 

  85. J. Chakraborty, A. Konar, A. Nagar, S. Das, Rotation and translation selective pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II, in Proceedings of IEEE Congress on Evolutionary Computation, 2009, pp. 2120–2126

    Google Scholar 

  86. S. Markon, D.V. Arnold, T. Back, T. Beielstein, H.G. Beyer, Thresholding-a selection operator for noisy ES, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, 2001, pp. 465–472

    Google Scholar 

  87. H. Eskandari, C.D. Geiger, R. Bird, Handling uncertainty in evolutionary multiobjective optimization: SPGA, in Proceedings of IEEE Congress on Evolutionary Computation, 2007, pp. 4130–4137

    Google Scholar 

  88. E.J. Hughes, Constraint handling with uncertain and noisy multi-objective evolution, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, 2001, pp. 963–970

    Google Scholar 

  89. D. Buche, P. Stoll, R. Dornberger, P. Koumoutsakos, Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(4), 460–473 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyusha Rakshit .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakshit, P., Konar, A. (2018). Agents and Multi-agent Coordination. In: Principles in Noisy Optimization. Cognitive Intelligence and Robotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-8642-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8642-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8641-0

  • Online ISBN: 978-981-10-8642-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics