Skip to main content

Engineered Group I Ribozymes as RNA-Based Modular Tools to Control Gene Expression

  • Chapter
  • First Online:
Applied RNA Bioscience

Abstract

Group I ribozymes (RNA enzymes) constitute a class of structural RNAs that promote cleavage and ligation of phosphodiester bonds to conduct RNA splicing. As naturally occurring group I ribozymes are constitutively active in most cases, modular engineering is required to apply them to control gene expression. We first introduce exceptional examples of modified splicing reactions of group I ribozymes. We then summarize strategies to engineer group I ribozymes to develop genetic modular tools and also their application to gene expression control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akins RA, Lambowitz AM (1987) A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 50:331–345

    Article  CAS  Google Scholar 

  • Alexander RC, Baum DA, Testa SM (2005) 5′ transcript replacement in vitro catalyzed by a group I intron-derived ribozyme. Biochemistry 44:7796–7804

    Article  CAS  Google Scholar 

  • Amini ZN, Müller UF (2015) Increased efficiency of evolved group I intron spliceozymes by decreased side product formation. RNA 21:1480–1489

    Article  CAS  Google Scholar 

  • Amini ZN, Olson KE, Müller UF (2014) Spliceozymes: ribozymes that remove introns from pre-mRNAs in trans. PLoS One 9:e101932. https://doi.org/10.1371/journal.pone.0101932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atsumi S, Ikawa Y, Shiraishi IT (2001) Design and development of a catalytic ribonucleoprotein. EMBO J 20:5453–5460

    Article  CAS  Google Scholar 

  • Baum DA, Testa SM (2005) In vivo excision of a single targeted nucleotide from an mRNA by a trans excision-splicing ribozyme. RNA 11:897–905

    Article  CAS  Google Scholar 

  • Bell MA, Johnson AK, Testa SM (2002) Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry 41:15327–15333

    Article  CAS  Google Scholar 

  • Caprara MG, Lehnert V, Lambowitz AM, Westhof E (1996) A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87:1135–1145

    Article  CAS  Google Scholar 

  • Che AJ, Knight TF Jr (2010) Engineering a family of synthetic splicing ribozymes. Nucleic Acids Res 38:2748–2755

    Article  CAS  Google Scholar 

  • Deshpande NN, Bao Y, Herrin DL (1997) Evidence for light/redox-regulated splicing of psbA pre-RNAs in Chlamydomonas chloroplasts. RNA 3:37–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott D, Ladomery M (2016a) Pre-mRNA splicing by the spliceosome. In: Elliott D, Ladomery M (eds) Molecular biology of RNA, 2nd edn. Oxford University Press, Oxford, pp 84–110

    Google Scholar 

  • Elliott D, Ladomery M (2016b) Regulated alternative splicing. In: Elliott D, Ladomery M (eds) Molecular biology of RNA, 2nd edn. Oxford University Press, Oxford, pp 111–137

    Google Scholar 

  • Felletti M, Hartig JS (2017) Ligand-dependent ribozymes. Wiley Interdiscip Rev RNA 8. https://doi.org/10.1002/wrna.1395

  • Fiskaa T, Birgisdottir AB (2010) RNA reprogramming and repair based on trans-splicing group I ribozymes. New Biotechnol 27:194–203

    Article  CAS  Google Scholar 

  • Furukawa A, Tanaka T, Furuta H, Matsumura S, Ikawa Y (2016) Use of a fluorescent aptamer RNA as an exonic sequence to analyze self-splicing ability of a group I Intron from structured RNAs. Biology 5:pii: E43. https://doi.org/10.3390/biology5040043

    Article  Google Scholar 

  • Glanz S, Kück U (2009) Trans-splicing of organelle introns – a detour to continuous RNAs. Bioessays 31:921–934

    Article  CAS  Google Scholar 

  • Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104

    Article  CAS  Google Scholar 

  • Hong SH, Jeong JS, Lee YJ, Jung HI, Cho KS, Kim CM, Kwon BS, Sullenger BA, Lee SW, Kim IH (2008) In vivo reprogramming of hTERT by trans-splicing ribozyme to target tumor cells. Mol Ther 16:74–80

    Article  CAS  Google Scholar 

  • Ikawa Y, Tsuda K, Matsumura S, Atsumi S, Inoue T (2003) Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP. Nucleic Acids Res 31:1488–1496

    Article  CAS  Google Scholar 

  • Inoue T, Sullivan FX, Cech TR (1986) New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing. J Mol Biol 189:143–165

    Article  CAS  Google Scholar 

  • Jones JT, Sullenger BA (1997) Evaluating and enhancing ribozyme reaction efficiency in mammalian cells. Nat Biotechnol 15:902–905

    Article  CAS  Google Scholar 

  • Kertsburg K, Soukup GA (2002) A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res 30:4599–4606

    Article  CAS  Google Scholar 

  • Kim J, Jeong S, Kertsburg A, Soukup GA, Lee SW (2014) Conditional and target-specific transgene induction through RNA replacement using an allosteric trans-splicing ribozyme. ACS Chem Biol 9:2491–2495

    Article  CAS  Google Scholar 

  • Kim SJ, Kim JH, Yang B, Jeong JS, Lee SW (2017) Specific and efficient regression of cancers harboring KRAS mutation by targeted RNA replacement. Mol Ther 25:356–367

    Article  CAS  Google Scholar 

  • Kohchi T, Umesono K, Ogura Y, Komine Y, Nakahigashi K, Komano T, Yamada Y, Ozeki H, Ohyama K (1988) A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha, chloroplasts. Nucleic Acids Res 16:10025–10036

    Article  CAS  Google Scholar 

  • Köhler U, Ayre BG, Goodman HM, Haseloff J (1999) Trans-splicing ribozymes for targeted gene delivery. J Mol Biol 285:1935–1950

    Article  Google Scholar 

  • Lambowitz AM, Zimmerly S (2010) Group II introns: mobile ribozymes that invade DNA. In: Atkins JF, Gesteland RF, Cech TR (eds) RNA worlds: from life’s origins to diversity in gene regulation. CSHL Press, New York, pp 103–121

    Google Scholar 

  • Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA (1998) Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science 280:1593–1596

    Article  CAS  Google Scholar 

  • Landthaler M, Shub DA (1999) Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc Natl Acad Sci U S A 96:7005–7010

    Article  CAS  Google Scholar 

  • Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR (2010) An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329:845–848

    Article  CAS  Google Scholar 

  • Li S, Breaker RR (2013) Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res 41:3022–3031

    Article  CAS  Google Scholar 

  • Mohr G, Caprara MG, Guo Q, Lambowitz AM (1994) A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature 370:147–150

    Article  CAS  Google Scholar 

  • Müller UF (2017) Design and experimental evolution of trans-splicing group I intron ribozymes. Molecules 22:pii: E75. https://doi.org/10.3390/molecules22010075

    Article  CAS  Google Scholar 

  • Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF (2012) Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol 29:2199–2210

    Article  CAS  Google Scholar 

  • Nguyen TH, Galej WP, Fica SM, Lin PC, Newman AJ, Nagai K (2016) CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr Opin Struct Biol 36:48–57

    Article  CAS  Google Scholar 

  • Oi H, Fujita D, Suzuki Y, Sugiyama H, Endo M, Matsumura S, Ikawa Y (2017) Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes. J Biochem 61:451–462

    Google Scholar 

  • Olson KE, Müller UF (2012) An in vivo selection method to optimize trans-splicing ribozymes. RNA 18:581–589

    Article  CAS  Google Scholar 

  • Paukstelis PJ, Chen JH, Chase E, Lambowitz AM, Golden BL (2008) Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature 451:94–97

    Article  CAS  Google Scholar 

  • Phylactou LA, Darrah C, Wood MJ (1998) Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet 18:378–381

    Article  CAS  Google Scholar 

  • Pombert JF, Otis C, Turmel M, Lemieux C (2013) The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene. PLoS One 8:e84325. https://doi.org/10.1371/journal.pone.0084325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavan R, Miller SR, Hicks LD, Minnick MF (2007) The unusual 23S rRNA gene of Coxiella burnetii: two self-splicing group I introns flank a 34-base-pair exon, and one element lacks the canonical omegaG. J Bacteriol 189:6572–6579

    Article  CAS  Google Scholar 

  • Ryu KJ, Lee SW (2003) Identification of the most accessible sites to ribozymes on the hepatitis C virus internal ribosome entry site. J Biochem Mol Biol 36:538–544

    CAS  PubMed  Google Scholar 

  • Shaw LC, Lewin AS (1997) The Cbp2 protein stimulates the splicing of the omega intron of yeast mitochondria. Nucleic Acids Res 25:1597–1604

    Article  CAS  Google Scholar 

  • Silverman SK (2003) Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9:377–383

    Article  CAS  Google Scholar 

  • Stahley MR, Strobel SA (2006) RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Curr Opin Struct Biol 16:319–326

    Article  CAS  Google Scholar 

  • Sullenger BA, Cech TR (1994) Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371:619–622

    Article  CAS  Google Scholar 

  • Tanaka T, Furuta H, Ikawa Y (2014) Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme. J Biosci Bioeng 117:407–412

    Article  CAS  Google Scholar 

  • Tanaka T, Matsumura S, Furuta H, Ikawa Y (2016) Tecto-GIRz: engineered group I ribozyme the catalytic ability of which can be controlled by self-dimerization. ChemBioChem 17:1448–1455

    Article  CAS  Google Scholar 

  • Tanaka T, Hirata Y, Tominaga Y, Furuta H, Matsumura S, Ikawa Y (2017) Heterodimerization of group I ribozymes enabling exon recombination through pairs of cooperative trans-splicing reactions. ChemBioChem 18:1659–1667

    Article  CAS  Google Scholar 

  • Tang J, Breaker RR (1997) Rational design of allosteric ribozymes. Chem Biol 4:453–459

    Article  CAS  Google Scholar 

  • Thompson KM, Syrett HA, Knudsen SM, Ellington AD (2002) Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2. https://doi.org/10.1186/1472-6750-2-21

  • Vicens Q, Cech TR (2006) Atomic level architecture of group I introns revealed. Trends Biochem Sci 31:41–51

    Article  CAS  Google Scholar 

  • Vicens Q, Paukstelis PJ, Westhof E, Lambowitz AM, Cech TR (2008) Toward predicting self-splicing and protein-facilitated splicing of group I introns. RNA 14:2013–2029

    Article  CAS  Google Scholar 

  • Will CL, Lührmann R (2010) Spliceosome structure and function. In: Atkins JF, Gesteland RF, Cech TR (eds) RNA worlds: from life’s origins to diversity in gene regulation. CSHL Press, New York, pp 181–203

    Google Scholar 

  • Woodson SA (2005) Structure and assembly of group I introns. Curr Opin Struct Biol 15:324–330

    Article  CAS  Google Scholar 

  • Zhao C, Pyle AM (2017) Structural insights into the mechanism of group II intron splicing. Trends Biochem Sci 42:470–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP 15 K05561 (to Y.I.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This work was also supported partly by University of Toyama Discretionary Funds of the President “Toyama RNA Research Alliance” (to Y.I. and S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiya Ikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikawa, Y., Matsumura, S. (2018). Engineered Group I Ribozymes as RNA-Based Modular Tools to Control Gene Expression. In: Masuda, S., Izawa, S. (eds) Applied RNA Bioscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-8372-3_13

Download citation

Publish with us

Policies and ethics